File size: 2,367 Bytes
f535954 6adec17 b43007a d5183eb 6adec17 08e444a f535954 d5183eb f535954 5e3ddd2 f535954 5e3ddd2 d5183eb 745851a f535954 d5183eb f535954 5e3ddd2 f535954 5e3ddd2 f535954 5e3ddd2 f535954 5e3ddd2 f535954 5e3ddd2 f535954 d5183eb f535954 d5183eb f535954 d5183eb 04687ec d5183eb 04687ec b43007a d5183eb f535954 d5183eb f535954 d5183eb 745851a f535954 d5183eb f535954 d5183eb 08e444a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
base_model: UmarRamzan/w2v2-bert-urdu
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-bert-urdu
results: []
language:
- ur
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2Vec-Bert-2.0-Urdu
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Urdu split of the [Common Voice 17](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3681
- Wer: 0.2929
## Model description
## Usage Instructions
```python
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
import torch
from datasets import load_dataset
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate
processor = AutoProcessor.from_pretrained("UmarRamzan/w2v2-bert-urdu")
model = Wav2Vec2BertModel.from_pretrained("UmarRamzan/w2v2-bert-urdu")
# audio file is decoded on the fly
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.4362 | 0.1695 | 50 | 0.4144 | 0.3213 |
| 0.3776 | 0.3390 | 100 | 0.4029 | 0.3137 |
| 0.3918 | 0.5085 | 150 | 0.4095 | 0.3060 |
| 0.3968 | 0.6780 | 200 | 0.3961 | 0.3060 |
| 0.3685 | 0.8475 | 250 | 0.3681 | 0.2929 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |