File size: 1,747 Bytes
f535954
6adec17
b43007a
d5183eb
 
 
 
 
 
6adec17
08e444a
 
f535954
 
d5183eb
 
f535954
d5183eb
f535954
b43007a
d5183eb
745851a
 
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
f535954
d5183eb
04687ec
d5183eb
 
 
 
 
 
 
04687ec
b43007a
d5183eb
f535954
d5183eb
f535954
d5183eb
 
745851a
 
 
 
 
f535954
 
d5183eb
f535954
d5183eb
 
 
08e444a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: UmarRamzan/w2v2-bert-urdu
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-bert-urdu
  results: []
language:
- ur
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-bert-urdu

This model is a fine-tuned version of [UmarRamzan/w2v2-bert-urdu](https://huggingface.co/UmarRamzan/w2v2-bert-urdu) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3681
- Wer: 0.2929

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.4362        | 0.1695 | 50   | 0.4144          | 0.3213 |
| 0.3776        | 0.3390 | 100  | 0.4029          | 0.3137 |
| 0.3918        | 0.5085 | 150  | 0.4095          | 0.3060 |
| 0.3968        | 0.6780 | 200  | 0.3961          | 0.3060 |
| 0.3685        | 0.8475 | 250  | 0.3681          | 0.2929 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1