File size: 2,103 Bytes
abe0763
f7997cf
 
abe0763
 
 
 
 
 
f7997cf
0cf7378
 
47acf89
 
abe0763
 
 
 
 
47acf89
abe0763
47acf89
abe0763
f7997cf
47acf89
abe0763
 
 
47acf89
abe0763
47acf89
 
 
 
abe0763
47acf89
 
 
abe0763
47acf89
 
abe0763
47acf89
 
 
 
 
abe0763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7997cf
abe0763
 
 
 
 
 
 
0cf7378
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: UmarRamzan/w2v2-bert-urdu
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-bert-urdu
  results: []
language:
- ur
datasets:
- mozilla-foundation/common_voice_17_0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wav2Vec-Bert-2.0-Urdu

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Urdu split of the [Common Voice 17](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) dataset. The fine-tuned model is enhanced with the addition of an ngram language model that has also been trained on the same dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3681
- Wer: 0.2407

## Model description

## Usage Instructions

```python
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
import torch
from datasets import load_dataset

dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate

processor = AutoProcessor.from_pretrained("UmarRamzan/w2v2-bert-ngram-urdu")
model = Wav2Vec2BertModel.from_pretrained("UmarRamzan/w2v2-bert-ngram-urdu")

# audio file is decoded on the fly
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1