Tawkat commited on
Commit
8927374
·
verified ·
1 Parent(s): c8f8c88

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -13
README.md CHANGED
@@ -43,10 +43,14 @@ model_name = "UBC-NLP/GreenLLaMA-7b"
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForCausalLM.from_pretrained(model_name)
45
 
46
- input_text = "Write me a poem about Machine Learning."
47
- input_ids = tokenizer(input_text, return_tensors="pt")
 
 
 
 
48
 
49
- outputs = model.generate(**input_ids)
50
  print(tokenizer.decode(outputs[0]))
51
  ```
52
 
@@ -66,11 +70,11 @@ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
66
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
67
 
68
  input = "Those shithead should stop talking and get the f*ck out of this place"
69
- input_text = prompt+inp+"\n"
70
 
71
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
72
 
73
- outputs = model.generate(**input_ids)
74
  print(tokenizer.decode(outputs[0]))
75
  ```
76
 
@@ -91,11 +95,11 @@ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torc
91
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
92
 
93
  input = "Those shithead should stop talking and get the f*ck out of this place"
94
- input_text = prompt+inp+"\n"
95
 
96
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
97
 
98
- outputs = model.generate(**input_ids)
99
  print(tokenizer.decode(outputs[0]))
100
  ```
101
 
@@ -112,11 +116,11 @@ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torc
112
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
113
 
114
  input = "Those shithead should stop talking and get the f*ck out of this place"
115
- input_text = prompt+inp+"\n"
116
 
117
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
118
 
119
- outputs = model.generate(**input_ids)
120
  print(tokenizer.decode(outputs[0]))
121
  ```
122
 
@@ -137,11 +141,11 @@ model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=qua
137
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
138
 
139
  input = "Those shithead should stop talking and get the f*ck out of this place"
140
- input_text = prompt+inp+"\n"
141
 
142
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
143
 
144
- outputs = model.generate(**input_ids)
145
  print(tokenizer.decode(outputs[0]))
146
  ```
147
 
@@ -160,11 +164,11 @@ model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=qua
160
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
161
 
162
  input = "Those shithead should stop talking and get the f*ck out of this place"
163
- input_text = prompt+inp+"\n"
164
 
165
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
166
 
167
- outputs = model.generate(**input_ids)
168
  print(tokenizer.decode(outputs[0]))
169
  ```
170
 
 
43
  tokenizer = AutoTokenizer.from_pretrained(model_name)
44
  model = AutoModelForCausalLM.from_pretrained(model_name)
45
 
46
+ prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
47
+
48
+ input = "Those shithead should stop talking and get the f*ck out of this place"
49
+ input_text = prompt+input+"\n"
50
+
51
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
52
 
53
+ outputs = model.generate(**input_ids, do_sample=False)
54
  print(tokenizer.decode(outputs[0]))
55
  ```
56
 
 
70
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
71
 
72
  input = "Those shithead should stop talking and get the f*ck out of this place"
73
+ input_text = prompt+input+"\n"
74
 
75
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
76
 
77
+ outputs = model.generate(**input_ids, do_sample=False)
78
  print(tokenizer.decode(outputs[0]))
79
  ```
80
 
 
95
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
96
 
97
  input = "Those shithead should stop talking and get the f*ck out of this place"
98
+ input_text = prompt+input+"\n"
99
 
100
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
101
 
102
+ outputs = model.generate(**input_ids, do_sample=False)
103
  print(tokenizer.decode(outputs[0]))
104
  ```
105
 
 
116
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
117
 
118
  input = "Those shithead should stop talking and get the f*ck out of this place"
119
+ input_text = prompt+input+"\n"
120
 
121
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
122
 
123
+ outputs = model.generate(**input_ids, do_sample=False)
124
  print(tokenizer.decode(outputs[0]))
125
  ```
126
 
 
141
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
142
 
143
  input = "Those shithead should stop talking and get the f*ck out of this place"
144
+ input_text = prompt+input+"\n"
145
 
146
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
147
 
148
+ outputs = model.generate(**input_ids, do_sample=False)
149
  print(tokenizer.decode(outputs[0]))
150
  ```
151
 
 
164
  prompt = "Rewrite the following toxic input into non-toxic version. Let's break the input down step by step to rewrite the non-toxic version. You should first think about the expanation of why the input text is toxic. Then generate the detoxic output. You must preserve the original meaning as much as possible.\nInput: "
165
 
166
  input = "Those shithead should stop talking and get the f*ck out of this place"
167
+ input_text = prompt+input+"\n"
168
 
169
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
170
 
171
+ outputs = model.generate(**input_ids, do_sample=False)
172
  print(tokenizer.decode(outputs[0]))
173
  ```
174