nicholasKluge
commited on
Upload configuration.py with huggingface_hub
Browse files- configuration.py +116 -0
configuration.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from transformers import CONFIG_MAPPING
|
3 |
+
from transformers import AutoConfig
|
4 |
+
|
5 |
+
IGNORE_INDEX = -100
|
6 |
+
IMAGE_TOKEN_INDEX = -200
|
7 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
8 |
+
|
9 |
+
|
10 |
+
class TinyLlavaConfig(PretrainedConfig):
|
11 |
+
|
12 |
+
model_type = "tinyllava"
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
llm_model_name_or_path = '',
|
16 |
+
tokenizer_name_or_path = None,
|
17 |
+
vision_model_name_or_path = '',
|
18 |
+
vision_model_name_or_path2 = '',
|
19 |
+
connector_type = None,
|
20 |
+
text_config=None,
|
21 |
+
hidden_size=2048,
|
22 |
+
vocab_size=32000,
|
23 |
+
ignore_index=-100,
|
24 |
+
image_token_index=32000,
|
25 |
+
pad_token = None,
|
26 |
+
pad_token_id = None,
|
27 |
+
tokenizer_padding_side = 'right',
|
28 |
+
tokenizer_model_max_length = 2048,
|
29 |
+
vision_config = None,
|
30 |
+
vision_hidden_size = None,
|
31 |
+
vision_feature_layer = -2,
|
32 |
+
vision_feature_select_strategy = 'patch',
|
33 |
+
image_aspect_ratio = 'square',
|
34 |
+
resampler_hidden_size = None,
|
35 |
+
num_queries = None,
|
36 |
+
num_resampler_layers = None,
|
37 |
+
use_cache = False,
|
38 |
+
cache_dir = None,
|
39 |
+
tokenizer_use_fast = False,
|
40 |
+
tune_type_llm = 'frozen',
|
41 |
+
tune_type_connector = 'frozen',
|
42 |
+
tune_type_vision_tower = 'frozen',
|
43 |
+
tune_vision_tower_from_layer = -1,
|
44 |
+
|
45 |
+
**kwargs
|
46 |
+
|
47 |
+
):
|
48 |
+
self.llm_model_name_or_path = llm_model_name_or_path
|
49 |
+
self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path
|
50 |
+
self.vision_model_name_or_path = vision_model_name_or_path
|
51 |
+
self.vision_model_name_or_path2 = vision_model_name_or_path2
|
52 |
+
self.connector_type = connector_type
|
53 |
+
self.tune_type_llm = tune_type_llm
|
54 |
+
self.tune_type_connector = tune_type_connector
|
55 |
+
self.tune_type_vision_tower = tune_type_vision_tower
|
56 |
+
self.tune_vision_tower_from_layer = tune_vision_tower_from_layer
|
57 |
+
|
58 |
+
self.ignore_index = IGNORE_INDEX
|
59 |
+
self.image_token_index = IMAGE_TOKEN_INDEX
|
60 |
+
self.pad_token = pad_token
|
61 |
+
self.pad_token_id = pad_token_id
|
62 |
+
self.tokenizer_padding_side = tokenizer_padding_side
|
63 |
+
self.tokenizer_model_max_length = tokenizer_model_max_length
|
64 |
+
self.vision_feature_layer = vision_feature_layer
|
65 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
66 |
+
self.image_aspect_ratio = image_aspect_ratio
|
67 |
+
self.resampler_hidden_size = resampler_hidden_size
|
68 |
+
self.num_queries = num_queries
|
69 |
+
self.num_resampler_layers = num_resampler_layers
|
70 |
+
self.use_cache = use_cache
|
71 |
+
self.cache_dir = cache_dir
|
72 |
+
self.tokenizer_use_fast = tokenizer_use_fast
|
73 |
+
self._load_text_config(text_config)
|
74 |
+
self._load_vision_config(vision_config)
|
75 |
+
|
76 |
+
super().__init__(**kwargs)
|
77 |
+
|
78 |
+
|
79 |
+
def _load_text_config(self, text_config=None):
|
80 |
+
if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '':
|
81 |
+
self.text_config = CONFIG_MAPPING['llama']()
|
82 |
+
|
83 |
+
else:
|
84 |
+
self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True)
|
85 |
+
if text_config is not None:
|
86 |
+
self.text_config = self.text_config.from_dict(text_config)
|
87 |
+
|
88 |
+
self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None))
|
89 |
+
self.vocab_size = getattr(self.text_config, 'vocab_size', None)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
def _load_vision_config(self, vision_config=None):
|
94 |
+
if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '':
|
95 |
+
self.vision_config = CONFIG_MAPPING['clip_vision_model'](
|
96 |
+
intermediate_size=4096,
|
97 |
+
hidden_size=1024,
|
98 |
+
patch_size=14,
|
99 |
+
image_size=336,
|
100 |
+
num_hidden_layers=24,
|
101 |
+
num_attention_heads=16,
|
102 |
+
vocab_size=32000,
|
103 |
+
projection_dim=768,
|
104 |
+
)
|
105 |
+
|
106 |
+
else:
|
107 |
+
self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1])
|
108 |
+
self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config)
|
109 |
+
if vision_config is not None:
|
110 |
+
self.vision_config = self.vision_config.from_dict(vision_config)
|
111 |
+
|
112 |
+
self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1]
|
113 |
+
self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1]
|
114 |
+
self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None)
|
115 |
+
|
116 |
+
|