Tseaver commited on
Commit
b239fef
·
1 Parent(s): b2e1631

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.25 +/- 1.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97c08d90bd943f0a9a4f0903061feedc79c07a1b114cbec5b30ada8a817c028c
3
+ size 108063
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3c236f8550>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f3c236eeac0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1686335364366861990,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzmitPjJ8qjsIVTg/zmitPjJ8qjsIVTg/zmitPjJ8qjsIVTg/zmitPjJ8qjsIVTg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn2J7v7zThr8gLcW/kgzfv9cGKb+1lCO/ECbdP87Zub55ToK+b4scP31C3T0GsXQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjzOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjzOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjzOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.33869022 0.00520279 0.7200475 ]\n [0.33869022 0.00520279 0.7200475 ]\n [0.33869022 0.00520279 0.7200475 ]\n [0.33869022 0.00520279 0.7200475 ]]",
38
+ "desired_goal": "[[-0.9819736 -1.0533366 -1.5404396 ]\n [-1.7425711 -0.6602606 -0.63898784]\n [ 1.7277241 -0.36298984 -0.25450495]\n [ 0.6115026 0.10803697 0.95582616]]",
39
+ "observation": "[[ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]\n [ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]\n [ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]\n [ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmzj7vSmJHT3tt1s9eOvwPVKpJ71CDY8+SIlWvdPCxTwQWY0+u4+gvaFdob2xzpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.12266656 0.03846088 0.0536422 ]\n [ 0.11763662 -0.04093296 0.27939802]\n [-0.05237702 0.02414075 0.27607012]\n [-0.07839914 -0.07879186 0.29845193]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqd2vAnz3BsCUhpRSlIwBbJRLMowBdJRHQKWOZS0BwMp1fZQoaAZoCWgPQwhTtHIvMDsVwJSGlFKUaBVLMmgWR0CljhZOSGJvdX2UKGgGaAloD0MII8DpXbyvEcCUhpRSlGgVSzJoFkdApY3Gw1R+B3V9lChoBmgJaA9DCN3SakjcAw7AlIaUUpRoFUsyaBZHQKWNeK7ZnL91fZQoaAZoCWgPQwhwJxHhXxQWwJSGlFKUaBVLMmgWR0Clj8xKpT/AdX2UKGgGaAloD0MIQYAMHTuIDMCUhpRSlGgVSzJoFkdApY99i2DxsnV9lChoBmgJaA9DCAMJih9jrgjAlIaUUpRoFUsyaBZHQKWPLf/FR511fZQoaAZoCWgPQwgOgo5WtXQawJSGlFKUaBVLMmgWR0CljuABtDUmdX2UKGgGaAloD0MIzNHj9zb9EMCUhpRSlGgVSzJoFkdApZENIbwSanV9lChoBmgJaA9DCCTx8nSuSAzAlIaUUpRoFUsyaBZHQKWQvobGWD91fZQoaAZoCWgPQwgAGqVL/3INwJSGlFKUaBVLMmgWR0ClkG87yQPqdX2UKGgGaAloD0MI32+044b/EMCUhpRSlGgVSzJoFkdApZAhKjBVMnV9lChoBmgJaA9DCHo4gem0zg7AlIaUUpRoFUsyaBZHQKWSXLf1pTN1fZQoaAZoCWgPQwjbp+MxA8UQwJSGlFKUaBVLMmgWR0Clkg3XRPXTdX2UKGgGaAloD0MIonxBCwkYFMCUhpRSlGgVSzJoFkdApZG+UMXrMXV9lChoBmgJaA9DCJXUCWgifBrAlIaUUpRoFUsyaBZHQKWRcC9RJmN1fZQoaAZoCWgPQwiAuKtXkZESwJSGlFKUaBVLMmgWR0Clk6lS88LbdX2UKGgGaAloD0MI2QjE6/olD8CUhpRSlGgVSzJoFkdApZNahDgIhXV9lChoBmgJaA9DCOMbCp+tIxjAlIaUUpRoFUsyaBZHQKWTCwHqu8t1fZQoaAZoCWgPQwhxyAbSxQYPwJSGlFKUaBVLMmgWR0ClkrzS1E3LdX2UKGgGaAloD0MIPDCA8KFEB8CUhpRSlGgVSzJoFkdApZUCkfs/p3V9lChoBmgJaA9DCHB9WG/UyhXAlIaUUpRoFUsyaBZHQKWUs938n/l1fZQoaAZoCWgPQwirIXGPpU8dwJSGlFKUaBVLMmgWR0CllGRx1gYxdX2UKGgGaAloD0MIH/et1ol7FcCUhpRSlGgVSzJoFkdApZQWWWyC4HV9lChoBmgJaA9DCMqmXOFdnhHAlIaUUpRoFUsyaBZHQKWWdbJOnEV1fZQoaAZoCWgPQwiwdhTnqEMRwJSGlFKUaBVLMmgWR0CllicF6iTMdX2UKGgGaAloD0MIeVp+4CqPCsCUhpRSlGgVSzJoFkdApZXYGdI5HXV9lChoBmgJaA9DCMzs8xjl2QvAlIaUUpRoFUsyaBZHQKWVig+Qlrx1fZQoaAZoCWgPQwjlDMUdb2IZwJSGlFKUaBVLMmgWR0Cll9pC0F8pdX2UKGgGaAloD0MI++b+6nE/CMCUhpRSlGgVSzJoFkdApZeLvy9VWHV9lChoBmgJaA9DCNrJ4Ch51QfAlIaUUpRoFUsyaBZHQKWXPFefI0Z1fZQoaAZoCWgPQwh0Ka4q+44YwJSGlFKUaBVLMmgWR0Cllu5H/cWTdX2UKGgGaAloD0MIYFlpUgp6HsCUhpRSlGgVSzJoFkdApZlJVAAyVXV9lChoBmgJaA9DCCO9qN2vIgjAlIaUUpRoFUsyaBZHQKWY+oqkM1F1fZQoaAZoCWgPQwhXtDnObQIFwJSGlFKUaBVLMmgWR0ClmKtahYeUdX2UKGgGaAloD0MI6uqOxTbpCMCUhpRSlGgVSzJoFkdApZhdj9XLeXV9lChoBmgJaA9DCKjGSzeJkRDAlIaUUpRoFUsyaBZHQKWasUZeiSJ1fZQoaAZoCWgPQwgpJm+AmZ8RwJSGlFKUaBVLMmgWR0ClmmKXOW0JdX2UKGgGaAloD0MI0/VE14X/HMCUhpRSlGgVSzJoFkdApZoTM/yGz3V9lChoBmgJaA9DCMjsLHqnchTAlIaUUpRoFUsyaBZHQKWZxVDKHO91fZQoaAZoCWgPQwh7FK5H4UogwJSGlFKUaBVLMmgWR0Clm6y+6Ae8dX2UKGgGaAloD0MIF35wPnUMCsCUhpRSlGgVSzJoFkdApZtdh/iHZnV9lChoBmgJaA9DCLyQDg9hnAXAlIaUUpRoFUsyaBZHQKWbDcNYr8R1fZQoaAZoCWgPQwjVB5J3DiUHwJSGlFKUaBVLMmgWR0Clmr84o7V8dX2UKGgGaAloD0MIe9rhr8maBsCUhpRSlGgVSzJoFkdApZyCwhW5pnV9lChoBmgJaA9DCJaYZyWtOAvAlIaUUpRoFUsyaBZHQKWcM3gk1Mx1fZQoaAZoCWgPQwj5odKImZ0HwJSGlFKUaBVLMmgWR0Clm+OJUHY6dX2UKGgGaAloD0MIeAyP/SwGFsCUhpRSlGgVSzJoFkdApZuU9QoCuHV9lChoBmgJaA9DCMJtbeF5CQfAlIaUUpRoFUsyaBZHQKWdXf642CN1fZQoaAZoCWgPQwhaSwFp/6MHwJSGlFKUaBVLMmgWR0ClnQ7GFSKndX2UKGgGaAloD0MIJLTlXIprE8CUhpRSlGgVSzJoFkdApZy+5paibnV9lChoBmgJaA9DCKG5TiMtVQbAlIaUUpRoFUsyaBZHQKWccGFBY3h1fZQoaAZoCWgPQwhTBaOSOnERwJSGlFKUaBVLMmgWR0ClnjvEsJ6ZdX2UKGgGaAloD0MI/mDgufcwCMCUhpRSlGgVSzJoFkdApZ3skdFOPHV9lChoBmgJaA9DCExV2uIanwvAlIaUUpRoFUsyaBZHQKWdnIYFaB91fZQoaAZoCWgPQwgtza0QVsMPwJSGlFKUaBVLMmgWR0ClnU3l0YCRdX2UKGgGaAloD0MIhLweTIqPEsCUhpRSlGgVSzJoFkdApZ8NtdiUgXV9lChoBmgJaA9DCE8kmGpmzQXAlIaUUpRoFUsyaBZHQKWevmHxjKB1fZQoaAZoCWgPQwgVNgNckO0UwJSGlFKUaBVLMmgWR0Clnm51/2CedX2UKGgGaAloD0MIqYb9nljXF8CUhpRSlGgVSzJoFkdApZ4f0RODa3V9lChoBmgJaA9DCEqaP6a1yQ3AlIaUUpRoFUsyaBZHQKWf7Fm4Ajp1fZQoaAZoCWgPQwifVzz1SGMNwJSGlFKUaBVLMmgWR0Cln51U+9rXdX2UKGgGaAloD0MIgGH5823BEcCUhpRSlGgVSzJoFkdApZ9NRJmNBHV9lChoBmgJaA9DCImV0cjnxRTAlIaUUpRoFUsyaBZHQKWe/q3VkMF1fZQoaAZoCWgPQwiJIw9EFrkQwJSGlFKUaBVLMmgWR0CloMdxyXD4dX2UKGgGaAloD0MIZ0gVxavsAsCUhpRSlGgVSzJoFkdApaB4I4VARnV9lChoBmgJaA9DCLA5B8+E5hDAlIaUUpRoFUsyaBZHQKWgKCTUy591fZQoaAZoCWgPQwiSBUzg1q0XwJSGlFKUaBVLMmgWR0Cln9mhmGucdX2UKGgGaAloD0MIQZqxaDrrE8CUhpRSlGgVSzJoFkdApaGpha1Ti3V9lChoBmgJaA9DCOaRPxh43hfAlIaUUpRoFUsyaBZHQKWhWkB0ZFZ1fZQoaAZoCWgPQwjo9/2bF/cRwJSGlFKUaBVLMmgWR0CloQpYkmhNdX2UKGgGaAloD0MIyM1wAz7fB8CUhpRSlGgVSzJoFkdApaC7t3OfNHV9lChoBmgJaA9DCFex+E1hZRXAlIaUUpRoFUsyaBZHQKWig6jnFHd1fZQoaAZoCWgPQwjp7job8u8HwJSGlFKUaBVLMmgWR0ClojRSHdoGdX2UKGgGaAloD0MIpU+r6A/9EsCUhpRSlGgVSzJoFkdApaHkPatcOnV9lChoBmgJaA9DCI/8wcBzLw3AlIaUUpRoFUsyaBZHQKWhla2WpqB1fZQoaAZoCWgPQwhFnE6y1QUMwJSGlFKUaBVLMmgWR0Clo1ufEn9fdX2UKGgGaAloD0MIUN8yp8tSHMCUhpRSlGgVSzJoFkdApaMMZHd43XV9lChoBmgJaA9DCCKI83AC8w7AlIaUUpRoFUsyaBZHQKWivGkvboN1fZQoaAZoCWgPQwgyA5Xx72MRwJSGlFKUaBVLMmgWR0Clom3QD3dsdX2UKGgGaAloD0MIyRzLu+rhEMCUhpRSlGgVSzJoFkdApaRhzBAOa3V9lChoBmgJaA9DCIums5PBkQTAlIaUUpRoFUsyaBZHQKWkE0b961N1fZQoaAZoCWgPQwh+Ab1w53IcwJSGlFKUaBVLMmgWR0Clo8QA+6iCdX2UKGgGaAloD0MI0bLuHwuhHcCUhpRSlGgVSzJoFkdApaN1/BnBcnV9lChoBmgJaA9DCBKkUuxoPAXAlIaUUpRoFUsyaBZHQKWlwGs3hn91fZQoaAZoCWgPQwiYvWw7bX0UwJSGlFKUaBVLMmgWR0ClpXGR/3FldX2UKGgGaAloD0MIv0NRoE+UGMCUhpRSlGgVSzJoFkdApaUiDTSb6XV9lChoBmgJaA9DCPWeymlPaQfAlIaUUpRoFUsyaBZHQKWk0+j/Mnt1fZQoaAZoCWgPQwibAwRz9NgNwJSGlFKUaBVLMmgWR0ClpxPm5lOHdX2UKGgGaAloD0MI5qxPOSYLEsCUhpRSlGgVSzJoFkdApabFOoHcDnV9lChoBmgJaA9DCMWu7e2WZA3AlIaUUpRoFUsyaBZHQKWmdb2USqV1fZQoaAZoCWgPQwiqukc2V80WwJSGlFKUaBVLMmgWR0Clpie6y0KJdX2UKGgGaAloD0MIAU2EDU+vGsCUhpRSlGgVSzJoFkdApah1xMnJDHV9lChoBmgJaA9DCLxZg/dVOQ3AlIaUUpRoFUsyaBZHQKWoJwSamXR1fZQoaAZoCWgPQwiVC5V/Lc8PwJSGlFKUaBVLMmgWR0Clp9efqX4TdX2UKGgGaAloD0MIMPFHUWdOB8CUhpRSlGgVSzJoFkdApaeKVfNRnHV9lChoBmgJaA9DCPRTHAdeTQrAlIaUUpRoFUsyaBZHQKWp7d+ocaR1fZQoaAZoCWgPQwgLmSuDaoMLwJSGlFKUaBVLMmgWR0ClqZ9fsu3+dX2UKGgGaAloD0MIwXEZNzVwFsCUhpRSlGgVSzJoFkdApalQPkJa7nV9lChoBmgJaA9DCJliDoKOVhTAlIaUUpRoFUsyaBZHQKWpAkLQXyl1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51dd1fda360d808139fa55e20d463b06b940aec3bc03bbcde5fa551388a4a978
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e974fde626b2f131a12341c6f867c3211760c1c0c12983c8fc4a00cc82b481c2
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3c236f8550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3c236eeac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686335364366861990, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAzmitPjJ8qjsIVTg/zmitPjJ8qjsIVTg/zmitPjJ8qjsIVTg/zmitPjJ8qjsIVTg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn2J7v7zThr8gLcW/kgzfv9cGKb+1lCO/ECbdP87Zub55ToK+b4scP31C3T0GsXQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjzOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjzOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjzOaK0+MnyqOwhVOD9DXoS7sMxLu4HcjjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.33869022 0.00520279 0.7200475 ]\n [0.33869022 0.00520279 0.7200475 ]\n [0.33869022 0.00520279 0.7200475 ]\n [0.33869022 0.00520279 0.7200475 ]]", "desired_goal": "[[-0.9819736 -1.0533366 -1.5404396 ]\n [-1.7425711 -0.6602606 -0.63898784]\n [ 1.7277241 -0.36298984 -0.25450495]\n [ 0.6115026 0.10803697 0.95582616]]", "observation": "[[ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]\n [ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]\n [ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]\n [ 0.33869022 0.00520279 0.7200475 -0.00403956 -0.00310973 0.01743913]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmzj7vSmJHT3tt1s9eOvwPVKpJ71CDY8+SIlWvdPCxTwQWY0+u4+gvaFdob2xzpg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12266656 0.03846088 0.0536422 ]\n [ 0.11763662 -0.04093296 0.27939802]\n [-0.05237702 0.02414075 0.27607012]\n [-0.07839914 -0.07879186 0.29845193]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqd2vAnz3BsCUhpRSlIwBbJRLMowBdJRHQKWOZS0BwMp1fZQoaAZoCWgPQwhTtHIvMDsVwJSGlFKUaBVLMmgWR0CljhZOSGJvdX2UKGgGaAloD0MII8DpXbyvEcCUhpRSlGgVSzJoFkdApY3Gw1R+B3V9lChoBmgJaA9DCN3SakjcAw7AlIaUUpRoFUsyaBZHQKWNeK7ZnL91fZQoaAZoCWgPQwhwJxHhXxQWwJSGlFKUaBVLMmgWR0Clj8xKpT/AdX2UKGgGaAloD0MIQYAMHTuIDMCUhpRSlGgVSzJoFkdApY99i2DxsnV9lChoBmgJaA9DCAMJih9jrgjAlIaUUpRoFUsyaBZHQKWPLf/FR511fZQoaAZoCWgPQwgOgo5WtXQawJSGlFKUaBVLMmgWR0CljuABtDUmdX2UKGgGaAloD0MIzNHj9zb9EMCUhpRSlGgVSzJoFkdApZENIbwSanV9lChoBmgJaA9DCCTx8nSuSAzAlIaUUpRoFUsyaBZHQKWQvobGWD91fZQoaAZoCWgPQwgAGqVL/3INwJSGlFKUaBVLMmgWR0ClkG87yQPqdX2UKGgGaAloD0MI32+044b/EMCUhpRSlGgVSzJoFkdApZAhKjBVMnV9lChoBmgJaA9DCHo4gem0zg7AlIaUUpRoFUsyaBZHQKWSXLf1pTN1fZQoaAZoCWgPQwjbp+MxA8UQwJSGlFKUaBVLMmgWR0Clkg3XRPXTdX2UKGgGaAloD0MIonxBCwkYFMCUhpRSlGgVSzJoFkdApZG+UMXrMXV9lChoBmgJaA9DCJXUCWgifBrAlIaUUpRoFUsyaBZHQKWRcC9RJmN1fZQoaAZoCWgPQwiAuKtXkZESwJSGlFKUaBVLMmgWR0Clk6lS88LbdX2UKGgGaAloD0MI2QjE6/olD8CUhpRSlGgVSzJoFkdApZNahDgIhXV9lChoBmgJaA9DCOMbCp+tIxjAlIaUUpRoFUsyaBZHQKWTCwHqu8t1fZQoaAZoCWgPQwhxyAbSxQYPwJSGlFKUaBVLMmgWR0ClkrzS1E3LdX2UKGgGaAloD0MIPDCA8KFEB8CUhpRSlGgVSzJoFkdApZUCkfs/p3V9lChoBmgJaA9DCHB9WG/UyhXAlIaUUpRoFUsyaBZHQKWUs938n/l1fZQoaAZoCWgPQwirIXGPpU8dwJSGlFKUaBVLMmgWR0CllGRx1gYxdX2UKGgGaAloD0MIH/et1ol7FcCUhpRSlGgVSzJoFkdApZQWWWyC4HV9lChoBmgJaA9DCMqmXOFdnhHAlIaUUpRoFUsyaBZHQKWWdbJOnEV1fZQoaAZoCWgPQwiwdhTnqEMRwJSGlFKUaBVLMmgWR0CllicF6iTMdX2UKGgGaAloD0MIeVp+4CqPCsCUhpRSlGgVSzJoFkdApZXYGdI5HXV9lChoBmgJaA9DCMzs8xjl2QvAlIaUUpRoFUsyaBZHQKWVig+Qlrx1fZQoaAZoCWgPQwjlDMUdb2IZwJSGlFKUaBVLMmgWR0Cll9pC0F8pdX2UKGgGaAloD0MI++b+6nE/CMCUhpRSlGgVSzJoFkdApZeLvy9VWHV9lChoBmgJaA9DCNrJ4Ch51QfAlIaUUpRoFUsyaBZHQKWXPFefI0Z1fZQoaAZoCWgPQwh0Ka4q+44YwJSGlFKUaBVLMmgWR0Cllu5H/cWTdX2UKGgGaAloD0MIYFlpUgp6HsCUhpRSlGgVSzJoFkdApZlJVAAyVXV9lChoBmgJaA9DCCO9qN2vIgjAlIaUUpRoFUsyaBZHQKWY+oqkM1F1fZQoaAZoCWgPQwhXtDnObQIFwJSGlFKUaBVLMmgWR0ClmKtahYeUdX2UKGgGaAloD0MI6uqOxTbpCMCUhpRSlGgVSzJoFkdApZhdj9XLeXV9lChoBmgJaA9DCKjGSzeJkRDAlIaUUpRoFUsyaBZHQKWasUZeiSJ1fZQoaAZoCWgPQwgpJm+AmZ8RwJSGlFKUaBVLMmgWR0ClmmKXOW0JdX2UKGgGaAloD0MI0/VE14X/HMCUhpRSlGgVSzJoFkdApZoTM/yGz3V9lChoBmgJaA9DCMjsLHqnchTAlIaUUpRoFUsyaBZHQKWZxVDKHO91fZQoaAZoCWgPQwh7FK5H4UogwJSGlFKUaBVLMmgWR0Clm6y+6Ae8dX2UKGgGaAloD0MIF35wPnUMCsCUhpRSlGgVSzJoFkdApZtdh/iHZnV9lChoBmgJaA9DCLyQDg9hnAXAlIaUUpRoFUsyaBZHQKWbDcNYr8R1fZQoaAZoCWgPQwjVB5J3DiUHwJSGlFKUaBVLMmgWR0Clmr84o7V8dX2UKGgGaAloD0MIe9rhr8maBsCUhpRSlGgVSzJoFkdApZyCwhW5pnV9lChoBmgJaA9DCJaYZyWtOAvAlIaUUpRoFUsyaBZHQKWcM3gk1Mx1fZQoaAZoCWgPQwj5odKImZ0HwJSGlFKUaBVLMmgWR0Clm+OJUHY6dX2UKGgGaAloD0MIeAyP/SwGFsCUhpRSlGgVSzJoFkdApZuU9QoCuHV9lChoBmgJaA9DCMJtbeF5CQfAlIaUUpRoFUsyaBZHQKWdXf642CN1fZQoaAZoCWgPQwhaSwFp/6MHwJSGlFKUaBVLMmgWR0ClnQ7GFSKndX2UKGgGaAloD0MIJLTlXIprE8CUhpRSlGgVSzJoFkdApZy+5paibnV9lChoBmgJaA9DCKG5TiMtVQbAlIaUUpRoFUsyaBZHQKWccGFBY3h1fZQoaAZoCWgPQwhTBaOSOnERwJSGlFKUaBVLMmgWR0ClnjvEsJ6ZdX2UKGgGaAloD0MI/mDgufcwCMCUhpRSlGgVSzJoFkdApZ3skdFOPHV9lChoBmgJaA9DCExV2uIanwvAlIaUUpRoFUsyaBZHQKWdnIYFaB91fZQoaAZoCWgPQwgtza0QVsMPwJSGlFKUaBVLMmgWR0ClnU3l0YCRdX2UKGgGaAloD0MIhLweTIqPEsCUhpRSlGgVSzJoFkdApZ8NtdiUgXV9lChoBmgJaA9DCE8kmGpmzQXAlIaUUpRoFUsyaBZHQKWevmHxjKB1fZQoaAZoCWgPQwgVNgNckO0UwJSGlFKUaBVLMmgWR0Clnm51/2CedX2UKGgGaAloD0MIqYb9nljXF8CUhpRSlGgVSzJoFkdApZ4f0RODa3V9lChoBmgJaA9DCEqaP6a1yQ3AlIaUUpRoFUsyaBZHQKWf7Fm4Ajp1fZQoaAZoCWgPQwifVzz1SGMNwJSGlFKUaBVLMmgWR0Cln51U+9rXdX2UKGgGaAloD0MIgGH5823BEcCUhpRSlGgVSzJoFkdApZ9NRJmNBHV9lChoBmgJaA9DCImV0cjnxRTAlIaUUpRoFUsyaBZHQKWe/q3VkMF1fZQoaAZoCWgPQwiJIw9EFrkQwJSGlFKUaBVLMmgWR0CloMdxyXD4dX2UKGgGaAloD0MIZ0gVxavsAsCUhpRSlGgVSzJoFkdApaB4I4VARnV9lChoBmgJaA9DCLA5B8+E5hDAlIaUUpRoFUsyaBZHQKWgKCTUy591fZQoaAZoCWgPQwiSBUzg1q0XwJSGlFKUaBVLMmgWR0Cln9mhmGucdX2UKGgGaAloD0MIQZqxaDrrE8CUhpRSlGgVSzJoFkdApaGpha1Ti3V9lChoBmgJaA9DCOaRPxh43hfAlIaUUpRoFUsyaBZHQKWhWkB0ZFZ1fZQoaAZoCWgPQwjo9/2bF/cRwJSGlFKUaBVLMmgWR0CloQpYkmhNdX2UKGgGaAloD0MIyM1wAz7fB8CUhpRSlGgVSzJoFkdApaC7t3OfNHV9lChoBmgJaA9DCFex+E1hZRXAlIaUUpRoFUsyaBZHQKWig6jnFHd1fZQoaAZoCWgPQwjp7job8u8HwJSGlFKUaBVLMmgWR0ClojRSHdoGdX2UKGgGaAloD0MIpU+r6A/9EsCUhpRSlGgVSzJoFkdApaHkPatcOnV9lChoBmgJaA9DCI/8wcBzLw3AlIaUUpRoFUsyaBZHQKWhla2WpqB1fZQoaAZoCWgPQwhFnE6y1QUMwJSGlFKUaBVLMmgWR0Clo1ufEn9fdX2UKGgGaAloD0MIUN8yp8tSHMCUhpRSlGgVSzJoFkdApaMMZHd43XV9lChoBmgJaA9DCCKI83AC8w7AlIaUUpRoFUsyaBZHQKWivGkvboN1fZQoaAZoCWgPQwgyA5Xx72MRwJSGlFKUaBVLMmgWR0Clom3QD3dsdX2UKGgGaAloD0MIyRzLu+rhEMCUhpRSlGgVSzJoFkdApaRhzBAOa3V9lChoBmgJaA9DCIums5PBkQTAlIaUUpRoFUsyaBZHQKWkE0b961N1fZQoaAZoCWgPQwh+Ab1w53IcwJSGlFKUaBVLMmgWR0Clo8QA+6iCdX2UKGgGaAloD0MI0bLuHwuhHcCUhpRSlGgVSzJoFkdApaN1/BnBcnV9lChoBmgJaA9DCBKkUuxoPAXAlIaUUpRoFUsyaBZHQKWlwGs3hn91fZQoaAZoCWgPQwiYvWw7bX0UwJSGlFKUaBVLMmgWR0ClpXGR/3FldX2UKGgGaAloD0MIv0NRoE+UGMCUhpRSlGgVSzJoFkdApaUiDTSb6XV9lChoBmgJaA9DCPWeymlPaQfAlIaUUpRoFUsyaBZHQKWk0+j/Mnt1fZQoaAZoCWgPQwibAwRz9NgNwJSGlFKUaBVLMmgWR0ClpxPm5lOHdX2UKGgGaAloD0MI5qxPOSYLEsCUhpRSlGgVSzJoFkdApabFOoHcDnV9lChoBmgJaA9DCMWu7e2WZA3AlIaUUpRoFUsyaBZHQKWmdb2USqV1fZQoaAZoCWgPQwiqukc2V80WwJSGlFKUaBVLMmgWR0Clpie6y0KJdX2UKGgGaAloD0MIAU2EDU+vGsCUhpRSlGgVSzJoFkdApah1xMnJDHV9lChoBmgJaA9DCLxZg/dVOQ3AlIaUUpRoFUsyaBZHQKWoJwSamXR1fZQoaAZoCWgPQwiVC5V/Lc8PwJSGlFKUaBVLMmgWR0Clp9efqX4TdX2UKGgGaAloD0MIMPFHUWdOB8CUhpRSlGgVSzJoFkdApaeKVfNRnHV9lChoBmgJaA9DCPRTHAdeTQrAlIaUUpRoFUsyaBZHQKWp7d+ocaR1fZQoaAZoCWgPQwgLmSuDaoMLwJSGlFKUaBVLMmgWR0ClqZ9fsu3+dX2UKGgGaAloD0MIwXEZNzVwFsCUhpRSlGgVSzJoFkdApalQPkJa7nV9lChoBmgJaA9DCJliDoKOVhTAlIaUUpRoFUsyaBZHQKWpAkLQXyl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (833 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.246900332439691, "std_reward": 1.2547828036791577, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-09T19:16:14.613453"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e62f189285f568b33a47336cd6b3c392a8f2cbd42ba9e2aa9d1604cd78a628d
3
+ size 2387