File size: 8,060 Bytes
9774a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "DWLOSBkp0A2U"
   },
   "source": [
    "# GPT-2 for music.\n",
    "\n",
    "This notebook shows you how to generate music with GPT-2\n",
    "\n",
    "---\n",
    "\n",
    "## Install depencencies."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "6J_AnhV8D5p6"
   },
   "outputs": [],
   "source": [
    "!pip install transformers\n",
    "!pip install note_seq"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "RzhHhFll0JVl"
   },
   "source": [
    "## Load the tokenizer and the model from 🤗 Hub."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "g3ih12FMD7bs"
   },
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer, AutoModelForCausalLM\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"TristanBehrens/js-fakes-4bars\")\n",
    "model = AutoModelForCausalLM.from_pretrained(\"TristanBehrens/js-fakes-4bars\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "GxRBk--Q0P1q"
   },
   "source": [
    "## How to generate."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ZZSLX96ID7t8"
   },
   "outputs": [],
   "source": [
    "# Encode the conditioning tokens.\n",
    "input_ids = tokenizer.encode(\"PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=60\", return_tensors=\"pt\")\n",
    "print(input_ids)\n",
    "\n",
    "# Generate more tokens.\n",
    "generated_ids = model.generate(input_ids, max_length=500)\n",
    "generated_sequence = tokenizer.decode(generated_ids[0])\n",
    "print(generated_sequence)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "YfHXFugA0WdI"
   },
   "source": [
    "## Convert the generated tokens to music that you can listen to."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "L3QMj8NyEBqs"
   },
   "outputs": [],
   "source": [
    "import note_seq\n",
    "\n",
    "NOTE_LENGTH_16TH_120BPM = 0.25 * 60 / 120\n",
    "BAR_LENGTH_120BPM = 4.0 * 60 / 120\n",
    "\n",
    "def token_sequence_to_note_sequence(token_sequence, use_program=True, use_drums=True, instrument_mapper=None, only_piano=False):\n",
    "\n",
    "    if isinstance(token_sequence, str):\n",
    "        token_sequence = token_sequence.split()\n",
    "\n",
    "    note_sequence = empty_note_sequence()\n",
    "\n",
    "    # Render all notes.\n",
    "    current_program = 1\n",
    "    current_is_drum = False\n",
    "    current_instrument = 0\n",
    "    track_count = 0\n",
    "    for token_index, token in enumerate(token_sequence):\n",
    "\n",
    "        if token == \"PIECE_START\":\n",
    "            pass\n",
    "        elif token == \"PIECE_END\":\n",
    "            print(\"The end.\")\n",
    "            break\n",
    "        elif token == \"TRACK_START\":\n",
    "            current_bar_index = 0\n",
    "            track_count += 1\n",
    "            pass\n",
    "        elif token == \"TRACK_END\":\n",
    "            pass\n",
    "        elif token == \"KEYS_START\":\n",
    "            pass\n",
    "        elif token == \"KEYS_END\":\n",
    "            pass\n",
    "        elif token.startswith(\"KEY=\"):\n",
    "            pass\n",
    "        elif token.startswith(\"INST\"):\n",
    "            instrument = token.split(\"=\")[-1]\n",
    "            if instrument != \"DRUMS\" and use_program:\n",
    "                if instrument_mapper is not None:\n",
    "                    if instrument in instrument_mapper:\n",
    "                        instrument = instrument_mapper[instrument]\n",
    "                current_program = int(instrument)\n",
    "                current_instrument = track_count\n",
    "                current_is_drum = False\n",
    "            if instrument == \"DRUMS\" and use_drums:\n",
    "                current_instrument = 0\n",
    "                current_program = 0\n",
    "                current_is_drum = True\n",
    "        elif token == \"BAR_START\":\n",
    "            current_time = current_bar_index * BAR_LENGTH_120BPM\n",
    "            current_notes = {}\n",
    "        elif token == \"BAR_END\":\n",
    "            current_bar_index += 1\n",
    "            pass\n",
    "        elif token.startswith(\"NOTE_ON\"):\n",
    "            pitch = int(token.split(\"=\")[-1])\n",
    "            note = note_sequence.notes.add()\n",
    "            note.start_time = current_time\n",
    "            note.end_time = current_time + 4 * NOTE_LENGTH_16TH_120BPM\n",
    "            note.pitch = pitch\n",
    "            note.instrument = current_instrument\n",
    "            note.program = current_program\n",
    "            note.velocity = 80\n",
    "            note.is_drum = current_is_drum\n",
    "            current_notes[pitch] = note\n",
    "        elif token.startswith(\"NOTE_OFF\"):\n",
    "            pitch = int(token.split(\"=\")[-1])\n",
    "            if pitch in current_notes:\n",
    "                note = current_notes[pitch]\n",
    "                note.end_time = current_time\n",
    "        elif token.startswith(\"TIME_DELTA\"):\n",
    "            delta = float(token.split(\"=\")[-1]) * NOTE_LENGTH_16TH_120BPM\n",
    "            current_time += delta\n",
    "        elif token.startswith(\"DENSITY=\"):\n",
    "            pass\n",
    "        elif token == \"[PAD]\":\n",
    "            pass\n",
    "        else:\n",
    "            #print(f\"Ignored token {token}.\")\n",
    "            pass\n",
    "\n",
    "    # Make the instruments right.\n",
    "    instruments_drums = []\n",
    "    for note in note_sequence.notes:\n",
    "        pair = [note.program, note.is_drum]\n",
    "        if pair not in instruments_drums:\n",
    "            instruments_drums += [pair]\n",
    "        note.instrument = instruments_drums.index(pair)\n",
    "\n",
    "    if only_piano:\n",
    "        for note in note_sequence.notes:\n",
    "            if not note.is_drum:\n",
    "                note.instrument = 0\n",
    "                note.program = 0\n",
    "\n",
    "    return note_sequence\n",
    "\n",
    "def empty_note_sequence(qpm=120.0, total_time=0.0):\n",
    "    note_sequence = note_seq.protobuf.music_pb2.NoteSequence()\n",
    "    note_sequence.tempos.add().qpm = qpm\n",
    "    note_sequence.ticks_per_quarter = note_seq.constants.STANDARD_PPQ\n",
    "    note_sequence.total_time = total_time\n",
    "    return note_sequence"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ZYpukydNESDF"
   },
   "outputs": [],
   "source": [
    "input_ids = tokenizer.encode(\"PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=61\", return_tensors=\"pt\")\n",
    "generated_ids = model.generate(input_ids, max_length=500, temperature=1.0)\n",
    "generated_sequence = tokenizer.decode(generated_ids[0])\n",
    "\n",
    "note_sequence = token_sequence_to_note_sequence(generated_sequence)\n",
    "\n",
    "synth = note_seq.midi_synth.synthesize\n",
    "note_seq.plot_sequence(note_sequence)\n",
    "note_seq.play_sequence(note_sequence, synth)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "d1x6HeF90kkO"
   },
   "source": [
    "# Thank you!"
   ]
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "name": "colab_jsfakes_generation.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}