Upload folder using huggingface_hub
Browse files- text-encoder/config.json +31 -0
- text-encoder/model.safetensors +3 -0
- text-encoder/utils.py +372 -0
- utils.py +372 -0
- vision-encoder/config.json +16 -0
- vision-encoder/model.safetensors +3 -0
- vision-encoder/utils.py +372 -0
text-encoder/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextEncoderOnly"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "utils.CLIPTextEncoderOnlyConfig",
|
8 |
+
"AutoModel": "utils.CLIPTextEncoderOnly"
|
9 |
+
},
|
10 |
+
"bos_token_id": 49406,
|
11 |
+
"eos_token_id": 49407,
|
12 |
+
"frozen": false,
|
13 |
+
"hidden_act": "quick_gelu",
|
14 |
+
"hidden_size": 512,
|
15 |
+
"initializer_factor": 1.0,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 2048,
|
18 |
+
"layer_norm_eps": 1e-05,
|
19 |
+
"lora": null,
|
20 |
+
"max_position_embeddings": 77,
|
21 |
+
"model_name": "openai/clip-vit-base-patch32",
|
22 |
+
"model_type": "clip_custom_text_model",
|
23 |
+
"num_attention_heads": 8,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 1,
|
26 |
+
"pretrained": false,
|
27 |
+
"projection_dim": 512,
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.40.1",
|
30 |
+
"vocab_size": 49408
|
31 |
+
}
|
text-encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c21916f6b7ea316bd457b3ee1c50a95f87a23959ac66ca0ef144ca7a8e5293c
|
3 |
+
size 253736912
|
text-encoder/utils.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, CLIPTextConfig, CLIPVisionConfig, PreTrainedModel, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
2 |
+
from transformers.utils import ModelOutput
|
3 |
+
import torch
|
4 |
+
import open_clip
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import safetensors.torch
|
7 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
8 |
+
import os
|
9 |
+
|
10 |
+
HF_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors"
|
11 |
+
HF_SAFE_WEIGHTS_NAME_PRIOR = "prior_model.safetensors"
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class PriorTransformerOutput(ModelOutput):
|
15 |
+
"""
|
16 |
+
The output of [`PriorTransformer`].
|
17 |
+
|
18 |
+
Args:
|
19 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
20 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
21 |
+
"""
|
22 |
+
|
23 |
+
predicted_image_embedding: torch.FloatTensor
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class TextEncoderOutput(ModelOutput):
|
27 |
+
"""
|
28 |
+
Output class for CLIPTextEncoderOnly model to store the outputs in a Hugging Face transformer style.
|
29 |
+
|
30 |
+
Attributes:
|
31 |
+
prompt_embeds (torch.Tensor): The embeddings of the input prompts.
|
32 |
+
last_hidden_states (torch.Tensor): The last hidden states from the model.
|
33 |
+
"""
|
34 |
+
text_embeds: torch.FloatTensor = None
|
35 |
+
last_hidden_state: torch.FloatTensor = None
|
36 |
+
|
37 |
+
class CLIPTextEncoderOnlyConfig(CLIPTextConfig):
|
38 |
+
model_type = "clip_custom_text_model"
|
39 |
+
|
40 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
41 |
+
self.model_name = model_name
|
42 |
+
self.pretrained = pretrained
|
43 |
+
self.frozen = frozen
|
44 |
+
self.lora = lora
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
class CLIPTextEncoderOnly(PreTrainedModel):
|
48 |
+
config_class = CLIPTextEncoderOnlyConfig
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
"""
|
52 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
53 |
+
|
54 |
+
:param model_name: The name or path of the pretrained model.
|
55 |
+
:param pretrained: Whether to load the pretrained weights.
|
56 |
+
"""
|
57 |
+
super().__init__(config)
|
58 |
+
|
59 |
+
if config.pretrained:
|
60 |
+
self.model = CLIPTextModelWithProjection.from_pretrained(config.model_name)
|
61 |
+
else:
|
62 |
+
base_cfg = CLIPTextConfig.from_pretrained(config.model_name)
|
63 |
+
self.model = CLIPTextModelWithProjection(base_cfg)
|
64 |
+
|
65 |
+
if config.lora:
|
66 |
+
l_config = LoraConfig(
|
67 |
+
r=config.lora.lora_r,
|
68 |
+
lora_alpha=config.lora.lora_alpha,
|
69 |
+
target_modules=[
|
70 |
+
"k_proj",
|
71 |
+
"v_proj",
|
72 |
+
"q_proj",
|
73 |
+
"out_proj",
|
74 |
+
"fc1",
|
75 |
+
"fc2",
|
76 |
+
"visual_projection",
|
77 |
+
"text_projection"
|
78 |
+
],
|
79 |
+
lora_dropout=config.lora.lora_dropout,
|
80 |
+
bias="lora_only",
|
81 |
+
)
|
82 |
+
self.model = get_peft_model(self.model, l_config)
|
83 |
+
|
84 |
+
|
85 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None):
|
86 |
+
"""
|
87 |
+
Forward pass of the model.
|
88 |
+
|
89 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
90 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
91 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
92 |
+
:return: Outputs of the model.
|
93 |
+
"""
|
94 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_hidden_states=True)
|
95 |
+
return TextEncoderOutput(text_embeds=outputs.text_embeds, last_hidden_state=outputs.last_hidden_state)
|
96 |
+
|
97 |
+
|
98 |
+
class CustomTextEncoderOnlyConfig(PretrainedConfig):
|
99 |
+
model_type = "whole_custom_text_model"
|
100 |
+
|
101 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, output_hidden_size: int = 512, last_hidden_state: bool = False, lora: dict = None, **kwargs):
|
102 |
+
self.model_name = model_name
|
103 |
+
self.pretrained = pretrained
|
104 |
+
self.frozen = frozen
|
105 |
+
self.output_hidden_size = output_hidden_size
|
106 |
+
self.last_hidden_state = last_hidden_state
|
107 |
+
self.lora = lora
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
|
110 |
+
class CustomTextEncoderOnly(PreTrainedModel):
|
111 |
+
config_class = CustomTextEncoderOnlyConfig
|
112 |
+
|
113 |
+
def __init__(self, config):
|
114 |
+
"""
|
115 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
116 |
+
|
117 |
+
:param model_name: The name or path of the pretrained model.
|
118 |
+
:param pretrained: Whether to load the pretrained weights.
|
119 |
+
"""
|
120 |
+
super().__init__(config)
|
121 |
+
|
122 |
+
self.last_hidden_state = config.last_hidden_state
|
123 |
+
|
124 |
+
if config.pretrained:
|
125 |
+
self.model = AutoModel.from_pretrained(config.model_name)
|
126 |
+
if config.frozen:
|
127 |
+
for param in self.model.parameters():
|
128 |
+
param.requires_grad = False
|
129 |
+
else:
|
130 |
+
self.model = AutoModel(config)
|
131 |
+
|
132 |
+
self.fc1 = torch.nn.Linear(self.model.config.hidden_size, config.output_hidden_size)
|
133 |
+
if config.last_hidden_state:
|
134 |
+
self.fc2 = torch.nn.Linear(self.model.config.hidden_size, config.output_hidden_size)
|
135 |
+
|
136 |
+
if config.lora:
|
137 |
+
l_config = LoraConfig(
|
138 |
+
task_type=TaskType.FEATURE_EXTRACTION,
|
139 |
+
r=config.lora.lora_r,
|
140 |
+
lora_alpha=config.lora.lora_alpha,
|
141 |
+
lora_dropout=config.lora.lora_dropout,
|
142 |
+
bias="lora_only",
|
143 |
+
)
|
144 |
+
self.model = get_peft_model(self.model, l_config)
|
145 |
+
|
146 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
147 |
+
"""
|
148 |
+
Forward pass of the model.
|
149 |
+
|
150 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
151 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
152 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
153 |
+
:return: Outputs of the model.
|
154 |
+
"""
|
155 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
|
156 |
+
text_embeds = self.fc1(outputs[1])
|
157 |
+
last_hidden_state = None
|
158 |
+
if self.last_hidden_state:
|
159 |
+
last_hidden_state = self.fc2(outputs[0])
|
160 |
+
else:
|
161 |
+
last_hidden_state = outputs[0]
|
162 |
+
return TextEncoderOutput(text_embeds=text_embeds, last_hidden_state=last_hidden_state)
|
163 |
+
|
164 |
+
class CLIPVisionEncoderOnlyConfig(PretrainedConfig):
|
165 |
+
model_type = "clip_custom_vision_model"
|
166 |
+
|
167 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
168 |
+
self.model_name = model_name
|
169 |
+
self.pretrained = pretrained
|
170 |
+
self.frozen = frozen
|
171 |
+
self.lora = lora
|
172 |
+
super().__init__(**kwargs)
|
173 |
+
|
174 |
+
class CLIPVisionEncoderOnly(PreTrainedModel):
|
175 |
+
config_class = CLIPVisionEncoderOnlyConfig
|
176 |
+
|
177 |
+
def __init__(self, config):
|
178 |
+
"""
|
179 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
180 |
+
|
181 |
+
:param model_name: The name or path of the pretrained model.
|
182 |
+
:param pretrained: Whether to load the pretrained weights.
|
183 |
+
"""
|
184 |
+
super().__init__(config)
|
185 |
+
|
186 |
+
if config.pretrained:
|
187 |
+
self.model = CLIPVisionModelWithProjection.from_pretrained(config.model_name)
|
188 |
+
else:
|
189 |
+
base_cfg = CLIPVisionConfig.from_pretrained(config.model_name)
|
190 |
+
self.model = CLIPVisionModelWithProjection(base_cfg)
|
191 |
+
|
192 |
+
if config.lora:
|
193 |
+
l_config = LoraConfig(
|
194 |
+
r=config.lora.lora_r,
|
195 |
+
lora_alpha=config.lora.lora_alpha,
|
196 |
+
target_modules=[
|
197 |
+
"k_proj",
|
198 |
+
"v_proj",
|
199 |
+
"q_proj",
|
200 |
+
"out_proj",
|
201 |
+
"fc1",
|
202 |
+
"fc2",
|
203 |
+
"visual_projection",
|
204 |
+
"text_projection"
|
205 |
+
],
|
206 |
+
lora_dropout=config.lora.lora_dropout,
|
207 |
+
bias="lora_only",
|
208 |
+
)
|
209 |
+
self.model = get_peft_model(self.model, l_config)
|
210 |
+
|
211 |
+
def forward(self, data):
|
212 |
+
"""
|
213 |
+
Forward pass of the model.
|
214 |
+
"""
|
215 |
+
return self.model(**data).image_embeds
|
216 |
+
|
217 |
+
def parameters(self):
|
218 |
+
return self.model.parameters()
|
219 |
+
|
220 |
+
|
221 |
+
class OpenCLIPVisionEncoderOnly(torch.nn.Module):
|
222 |
+
def __init__(self, model_name: str, pretrained: bool = True, frozen: bool = False, lora: dict = None):
|
223 |
+
"""
|
224 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
225 |
+
|
226 |
+
:param model_name: The name or path of the pretrained model.
|
227 |
+
:param pretrained: Whether to load the pretrained weights.
|
228 |
+
"""
|
229 |
+
super().__init__()
|
230 |
+
if pretrained:
|
231 |
+
model, _ = open_clip.create_model_from_pretrained(f"hf-hub:{model_name}")
|
232 |
+
model = model.visual
|
233 |
+
else:
|
234 |
+
raise NotImplemented
|
235 |
+
self.model = model
|
236 |
+
|
237 |
+
if lora:
|
238 |
+
l_config = LoraConfig(
|
239 |
+
r=lora.lora_r,
|
240 |
+
lora_alpha=lora.lora_alpha,
|
241 |
+
target_modules=[
|
242 |
+
"k_proj",
|
243 |
+
"v_proj",
|
244 |
+
"q_proj",
|
245 |
+
"out_proj",
|
246 |
+
"fc1",
|
247 |
+
"fc2",
|
248 |
+
"visual_projection",
|
249 |
+
"text_projection"
|
250 |
+
],
|
251 |
+
lora_dropout=lora.lora_dropout,
|
252 |
+
bias="lora_only",
|
253 |
+
)
|
254 |
+
self.model = get_peft_model(self.model, l_config)
|
255 |
+
|
256 |
+
def forward(self, image):
|
257 |
+
"""
|
258 |
+
Forward pass of the model.
|
259 |
+
"""
|
260 |
+
return self.model(image)
|
261 |
+
|
262 |
+
def save_pretrained(self, save_dir):
|
263 |
+
tensors = self.model.state_dict()
|
264 |
+
safetensors.torch.save_file(tensors, save_dir / HF_SAFE_WEIGHTS_NAME)
|
265 |
+
|
266 |
+
class CustomPriorModel(torch.nn.Module):
|
267 |
+
def __init__(self, in_hidden_state, out_hidden_state):
|
268 |
+
"""
|
269 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
270 |
+
|
271 |
+
:param model_name: The name or path of the pretrained model.
|
272 |
+
:param pretrained: Whether to load the pretrained weights.
|
273 |
+
"""
|
274 |
+
super().__init__()
|
275 |
+
mid_hidden_state = max(in_hidden_state, out_hidden_state)
|
276 |
+
|
277 |
+
self.fc1 = torch.nn.Linear(in_hidden_state*2, mid_hidden_state)
|
278 |
+
self.relu = torch.nn.ReLU()
|
279 |
+
self.fc2 = torch.nn.Linear(mid_hidden_state, out_hidden_state)
|
280 |
+
|
281 |
+
def reinitialize_model(self):
|
282 |
+
for name, param in self.named_parameters():
|
283 |
+
if param.requires_grad:
|
284 |
+
if len(param.shape) > 1:
|
285 |
+
torch.nn.init.xavier_uniform_(param)
|
286 |
+
else:
|
287 |
+
if 'weight' in name:
|
288 |
+
torch.nn.init.normal_(param)
|
289 |
+
else:
|
290 |
+
torch.nn.init.zeros_(param)
|
291 |
+
|
292 |
+
def forward(self, feats):
|
293 |
+
"""
|
294 |
+
Forward pass of the model.
|
295 |
+
"""
|
296 |
+
return PriorTransformerOutput(predicted_image_embedding=self.fc2(self.relu(self.fc1(feats))))
|
297 |
+
|
298 |
+
def save_pretrained(self, save_dir):
|
299 |
+
pass
|
300 |
+
# tensors = self.state_dict()
|
301 |
+
# safetensors.torch.save_file(tensors, os.path.join(save_dir, HF_SAFE_WEIGHTS_NAME_PRIOR))
|
302 |
+
|
303 |
+
|
304 |
+
def test_text_model(register=False, upload=False):
|
305 |
+
# register the classes
|
306 |
+
if register:
|
307 |
+
AutoConfig.register("clip_custom_text_model", CLIPTextEncoderOnlyConfig)
|
308 |
+
AutoModel.register(CLIPTextEncoderOnlyConfig, CLIPTextEncoderOnly)
|
309 |
+
CLIPTextEncoderOnlyConfig.register_for_auto_class()
|
310 |
+
CLIPTextEncoderOnly.register_for_auto_class("AutoModel")
|
311 |
+
|
312 |
+
if upload:
|
313 |
+
# Initialize the model
|
314 |
+
model_name = "openai/clip-vit-base-patch32"
|
315 |
+
pretrained=True
|
316 |
+
lora=None
|
317 |
+
|
318 |
+
cfg = CLIPTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
319 |
+
model = CLIPTextEncoderOnly(cfg)
|
320 |
+
model.push_to_hub("test-text-hf-upload")
|
321 |
+
|
322 |
+
model = CLIPTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
323 |
+
|
324 |
+
def test_custom_text_model(register=False, upload=False):
|
325 |
+
# register the classes
|
326 |
+
if register:
|
327 |
+
AutoConfig.register("whole_custom_text_model", CustomTextEncoderOnlyConfig)
|
328 |
+
AutoModel.register(CustomTextEncoderOnlyConfig, CustomTextEncoderOnly)
|
329 |
+
CustomTextEncoderOnlyConfig.register_for_auto_class()
|
330 |
+
CustomTextEncoderOnly.register_for_auto_class("AutoModel")
|
331 |
+
|
332 |
+
if upload:
|
333 |
+
# Initialize the model
|
334 |
+
model_name = "google-bert/bert-base-uncased"
|
335 |
+
pretrained=True
|
336 |
+
frozen=False
|
337 |
+
output_hidden_size=512
|
338 |
+
last_hidden_state=False
|
339 |
+
|
340 |
+
lora=None
|
341 |
+
|
342 |
+
cfg = CustomTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, frozen=frozen, output_hidden_size=output_hidden_size, last_hidden_state=last_hidden_state, lora=lora)
|
343 |
+
model = CustomTextEncoderOnly(cfg)
|
344 |
+
model.push_to_hub("test-text-hf-upload")
|
345 |
+
|
346 |
+
model = CustomTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
347 |
+
|
348 |
+
def test_vision_model(register=False, upload=False):
|
349 |
+
# register the classes
|
350 |
+
if register:
|
351 |
+
AutoConfig.register("clip_custom_vision_model", CLIPVisionEncoderOnlyConfig)
|
352 |
+
AutoModel.register(CLIPVisionEncoderOnlyConfig, CLIPVisionEncoderOnly)
|
353 |
+
CLIPVisionEncoderOnlyConfig.register_for_auto_class()
|
354 |
+
CLIPVisionEncoderOnly.register_for_auto_class("AutoModel")
|
355 |
+
|
356 |
+
if upload:
|
357 |
+
# Initialize the model
|
358 |
+
model_name = "openai/clip-vit-base-patch32"
|
359 |
+
pretrained=True
|
360 |
+
lora=None
|
361 |
+
|
362 |
+
cfg = CLIPVisionEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
363 |
+
model = CLIPVisionEncoderOnly(cfg)
|
364 |
+
model.push_to_hub("test-vision-hf-upload")
|
365 |
+
|
366 |
+
model = CLIPVisionEncoderOnly.from_pretrained("mpatel57/test-vision-hf-upload", force_download=True)
|
367 |
+
|
368 |
+
|
369 |
+
if __name__ == "__main__":
|
370 |
+
test_custom_text_model(register=False, upload=True)
|
371 |
+
# test_text_model(register=False, upload=True)
|
372 |
+
# test_vision_model(register=False, upload=True)
|
utils.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, CLIPTextConfig, CLIPVisionConfig, PreTrainedModel, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
2 |
+
from transformers.utils import ModelOutput
|
3 |
+
import torch
|
4 |
+
import open_clip
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import safetensors.torch
|
7 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
8 |
+
import os
|
9 |
+
|
10 |
+
HF_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors"
|
11 |
+
HF_SAFE_WEIGHTS_NAME_PRIOR = "prior_model.safetensors"
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class PriorTransformerOutput(ModelOutput):
|
15 |
+
"""
|
16 |
+
The output of [`PriorTransformer`].
|
17 |
+
|
18 |
+
Args:
|
19 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
20 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
21 |
+
"""
|
22 |
+
|
23 |
+
predicted_image_embedding: torch.FloatTensor
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class TextEncoderOutput(ModelOutput):
|
27 |
+
"""
|
28 |
+
Output class for CLIPTextEncoderOnly model to store the outputs in a Hugging Face transformer style.
|
29 |
+
|
30 |
+
Attributes:
|
31 |
+
prompt_embeds (torch.Tensor): The embeddings of the input prompts.
|
32 |
+
last_hidden_states (torch.Tensor): The last hidden states from the model.
|
33 |
+
"""
|
34 |
+
text_embeds: torch.FloatTensor = None
|
35 |
+
last_hidden_state: torch.FloatTensor = None
|
36 |
+
|
37 |
+
class CLIPTextEncoderOnlyConfig(CLIPTextConfig):
|
38 |
+
model_type = "clip_custom_text_model"
|
39 |
+
|
40 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
41 |
+
self.model_name = model_name
|
42 |
+
self.pretrained = pretrained
|
43 |
+
self.frozen = frozen
|
44 |
+
self.lora = lora
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
class CLIPTextEncoderOnly(PreTrainedModel):
|
48 |
+
config_class = CLIPTextEncoderOnlyConfig
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
"""
|
52 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
53 |
+
|
54 |
+
:param model_name: The name or path of the pretrained model.
|
55 |
+
:param pretrained: Whether to load the pretrained weights.
|
56 |
+
"""
|
57 |
+
super().__init__(config)
|
58 |
+
|
59 |
+
if config.pretrained:
|
60 |
+
self.model = CLIPTextModelWithProjection.from_pretrained(config.model_name)
|
61 |
+
else:
|
62 |
+
base_cfg = CLIPTextConfig.from_pretrained(config.model_name)
|
63 |
+
self.model = CLIPTextModelWithProjection(base_cfg)
|
64 |
+
|
65 |
+
if config.lora:
|
66 |
+
l_config = LoraConfig(
|
67 |
+
r=config.lora.lora_r,
|
68 |
+
lora_alpha=config.lora.lora_alpha,
|
69 |
+
target_modules=[
|
70 |
+
"k_proj",
|
71 |
+
"v_proj",
|
72 |
+
"q_proj",
|
73 |
+
"out_proj",
|
74 |
+
"fc1",
|
75 |
+
"fc2",
|
76 |
+
"visual_projection",
|
77 |
+
"text_projection"
|
78 |
+
],
|
79 |
+
lora_dropout=config.lora.lora_dropout,
|
80 |
+
bias="lora_only",
|
81 |
+
)
|
82 |
+
self.model = get_peft_model(self.model, l_config)
|
83 |
+
|
84 |
+
|
85 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None):
|
86 |
+
"""
|
87 |
+
Forward pass of the model.
|
88 |
+
|
89 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
90 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
91 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
92 |
+
:return: Outputs of the model.
|
93 |
+
"""
|
94 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_hidden_states=True)
|
95 |
+
return TextEncoderOutput(text_embeds=outputs.text_embeds, last_hidden_state=outputs.last_hidden_state)
|
96 |
+
|
97 |
+
|
98 |
+
class CustomTextEncoderOnlyConfig(PretrainedConfig):
|
99 |
+
model_type = "whole_custom_text_model"
|
100 |
+
|
101 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, output_hidden_size: int = 512, last_hidden_state: bool = False, lora: dict = None, **kwargs):
|
102 |
+
self.model_name = model_name
|
103 |
+
self.pretrained = pretrained
|
104 |
+
self.frozen = frozen
|
105 |
+
self.output_hidden_size = output_hidden_size
|
106 |
+
self.last_hidden_state = last_hidden_state
|
107 |
+
self.lora = lora
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
|
110 |
+
class CustomTextEncoderOnly(PreTrainedModel):
|
111 |
+
config_class = CustomTextEncoderOnlyConfig
|
112 |
+
|
113 |
+
def __init__(self, config):
|
114 |
+
"""
|
115 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
116 |
+
|
117 |
+
:param model_name: The name or path of the pretrained model.
|
118 |
+
:param pretrained: Whether to load the pretrained weights.
|
119 |
+
"""
|
120 |
+
super().__init__(config)
|
121 |
+
|
122 |
+
self.last_hidden_state = config.last_hidden_state
|
123 |
+
|
124 |
+
if config.pretrained:
|
125 |
+
self.model = AutoModel.from_pretrained(config.model_name)
|
126 |
+
if config.frozen:
|
127 |
+
for param in self.model.parameters():
|
128 |
+
param.requires_grad = False
|
129 |
+
else:
|
130 |
+
self.model = AutoModel(config)
|
131 |
+
|
132 |
+
self.fc1 = torch.nn.Linear(self.model.config.hidden_size, config.output_hidden_size)
|
133 |
+
if config.last_hidden_state:
|
134 |
+
self.fc2 = torch.nn.Linear(self.model.config.hidden_size, config.output_hidden_size)
|
135 |
+
|
136 |
+
if config.lora:
|
137 |
+
l_config = LoraConfig(
|
138 |
+
task_type=TaskType.FEATURE_EXTRACTION,
|
139 |
+
r=config.lora.lora_r,
|
140 |
+
lora_alpha=config.lora.lora_alpha,
|
141 |
+
lora_dropout=config.lora.lora_dropout,
|
142 |
+
bias="lora_only",
|
143 |
+
)
|
144 |
+
self.model = get_peft_model(self.model, l_config)
|
145 |
+
|
146 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
147 |
+
"""
|
148 |
+
Forward pass of the model.
|
149 |
+
|
150 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
151 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
152 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
153 |
+
:return: Outputs of the model.
|
154 |
+
"""
|
155 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
|
156 |
+
text_embeds = self.fc1(outputs[1])
|
157 |
+
last_hidden_state = None
|
158 |
+
if self.last_hidden_state:
|
159 |
+
last_hidden_state = self.fc2(outputs[0])
|
160 |
+
else:
|
161 |
+
last_hidden_state = outputs[0]
|
162 |
+
return TextEncoderOutput(text_embeds=text_embeds, last_hidden_state=last_hidden_state)
|
163 |
+
|
164 |
+
class CLIPVisionEncoderOnlyConfig(PretrainedConfig):
|
165 |
+
model_type = "clip_custom_vision_model"
|
166 |
+
|
167 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
168 |
+
self.model_name = model_name
|
169 |
+
self.pretrained = pretrained
|
170 |
+
self.frozen = frozen
|
171 |
+
self.lora = lora
|
172 |
+
super().__init__(**kwargs)
|
173 |
+
|
174 |
+
class CLIPVisionEncoderOnly(PreTrainedModel):
|
175 |
+
config_class = CLIPVisionEncoderOnlyConfig
|
176 |
+
|
177 |
+
def __init__(self, config):
|
178 |
+
"""
|
179 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
180 |
+
|
181 |
+
:param model_name: The name or path of the pretrained model.
|
182 |
+
:param pretrained: Whether to load the pretrained weights.
|
183 |
+
"""
|
184 |
+
super().__init__(config)
|
185 |
+
|
186 |
+
if config.pretrained:
|
187 |
+
self.model = CLIPVisionModelWithProjection.from_pretrained(config.model_name)
|
188 |
+
else:
|
189 |
+
base_cfg = CLIPVisionConfig.from_pretrained(config.model_name)
|
190 |
+
self.model = CLIPVisionModelWithProjection(base_cfg)
|
191 |
+
|
192 |
+
if config.lora:
|
193 |
+
l_config = LoraConfig(
|
194 |
+
r=config.lora.lora_r,
|
195 |
+
lora_alpha=config.lora.lora_alpha,
|
196 |
+
target_modules=[
|
197 |
+
"k_proj",
|
198 |
+
"v_proj",
|
199 |
+
"q_proj",
|
200 |
+
"out_proj",
|
201 |
+
"fc1",
|
202 |
+
"fc2",
|
203 |
+
"visual_projection",
|
204 |
+
"text_projection"
|
205 |
+
],
|
206 |
+
lora_dropout=config.lora.lora_dropout,
|
207 |
+
bias="lora_only",
|
208 |
+
)
|
209 |
+
self.model = get_peft_model(self.model, l_config)
|
210 |
+
|
211 |
+
def forward(self, data):
|
212 |
+
"""
|
213 |
+
Forward pass of the model.
|
214 |
+
"""
|
215 |
+
return self.model(**data).image_embeds
|
216 |
+
|
217 |
+
def parameters(self):
|
218 |
+
return self.model.parameters()
|
219 |
+
|
220 |
+
|
221 |
+
class OpenCLIPVisionEncoderOnly(torch.nn.Module):
|
222 |
+
def __init__(self, model_name: str, pretrained: bool = True, frozen: bool = False, lora: dict = None):
|
223 |
+
"""
|
224 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
225 |
+
|
226 |
+
:param model_name: The name or path of the pretrained model.
|
227 |
+
:param pretrained: Whether to load the pretrained weights.
|
228 |
+
"""
|
229 |
+
super().__init__()
|
230 |
+
if pretrained:
|
231 |
+
model, _ = open_clip.create_model_from_pretrained(f"hf-hub:{model_name}")
|
232 |
+
model = model.visual
|
233 |
+
else:
|
234 |
+
raise NotImplemented
|
235 |
+
self.model = model
|
236 |
+
|
237 |
+
if lora:
|
238 |
+
l_config = LoraConfig(
|
239 |
+
r=lora.lora_r,
|
240 |
+
lora_alpha=lora.lora_alpha,
|
241 |
+
target_modules=[
|
242 |
+
"k_proj",
|
243 |
+
"v_proj",
|
244 |
+
"q_proj",
|
245 |
+
"out_proj",
|
246 |
+
"fc1",
|
247 |
+
"fc2",
|
248 |
+
"visual_projection",
|
249 |
+
"text_projection"
|
250 |
+
],
|
251 |
+
lora_dropout=lora.lora_dropout,
|
252 |
+
bias="lora_only",
|
253 |
+
)
|
254 |
+
self.model = get_peft_model(self.model, l_config)
|
255 |
+
|
256 |
+
def forward(self, image):
|
257 |
+
"""
|
258 |
+
Forward pass of the model.
|
259 |
+
"""
|
260 |
+
return self.model(image)
|
261 |
+
|
262 |
+
def save_pretrained(self, save_dir):
|
263 |
+
tensors = self.model.state_dict()
|
264 |
+
safetensors.torch.save_file(tensors, save_dir / HF_SAFE_WEIGHTS_NAME)
|
265 |
+
|
266 |
+
class CustomPriorModel(torch.nn.Module):
|
267 |
+
def __init__(self, in_hidden_state, out_hidden_state):
|
268 |
+
"""
|
269 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
270 |
+
|
271 |
+
:param model_name: The name or path of the pretrained model.
|
272 |
+
:param pretrained: Whether to load the pretrained weights.
|
273 |
+
"""
|
274 |
+
super().__init__()
|
275 |
+
mid_hidden_state = max(in_hidden_state, out_hidden_state)
|
276 |
+
|
277 |
+
self.fc1 = torch.nn.Linear(in_hidden_state*2, mid_hidden_state)
|
278 |
+
self.relu = torch.nn.ReLU()
|
279 |
+
self.fc2 = torch.nn.Linear(mid_hidden_state, out_hidden_state)
|
280 |
+
|
281 |
+
def reinitialize_model(self):
|
282 |
+
for name, param in self.named_parameters():
|
283 |
+
if param.requires_grad:
|
284 |
+
if len(param.shape) > 1:
|
285 |
+
torch.nn.init.xavier_uniform_(param)
|
286 |
+
else:
|
287 |
+
if 'weight' in name:
|
288 |
+
torch.nn.init.normal_(param)
|
289 |
+
else:
|
290 |
+
torch.nn.init.zeros_(param)
|
291 |
+
|
292 |
+
def forward(self, feats):
|
293 |
+
"""
|
294 |
+
Forward pass of the model.
|
295 |
+
"""
|
296 |
+
return PriorTransformerOutput(predicted_image_embedding=self.fc2(self.relu(self.fc1(feats))))
|
297 |
+
|
298 |
+
def save_pretrained(self, save_dir):
|
299 |
+
pass
|
300 |
+
# tensors = self.state_dict()
|
301 |
+
# safetensors.torch.save_file(tensors, os.path.join(save_dir, HF_SAFE_WEIGHTS_NAME_PRIOR))
|
302 |
+
|
303 |
+
|
304 |
+
def test_text_model(register=False, upload=False):
|
305 |
+
# register the classes
|
306 |
+
if register:
|
307 |
+
AutoConfig.register("clip_custom_text_model", CLIPTextEncoderOnlyConfig)
|
308 |
+
AutoModel.register(CLIPTextEncoderOnlyConfig, CLIPTextEncoderOnly)
|
309 |
+
CLIPTextEncoderOnlyConfig.register_for_auto_class()
|
310 |
+
CLIPTextEncoderOnly.register_for_auto_class("AutoModel")
|
311 |
+
|
312 |
+
if upload:
|
313 |
+
# Initialize the model
|
314 |
+
model_name = "openai/clip-vit-base-patch32"
|
315 |
+
pretrained=True
|
316 |
+
lora=None
|
317 |
+
|
318 |
+
cfg = CLIPTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
319 |
+
model = CLIPTextEncoderOnly(cfg)
|
320 |
+
model.push_to_hub("test-text-hf-upload")
|
321 |
+
|
322 |
+
model = CLIPTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
323 |
+
|
324 |
+
def test_custom_text_model(register=False, upload=False):
|
325 |
+
# register the classes
|
326 |
+
if register:
|
327 |
+
AutoConfig.register("whole_custom_text_model", CustomTextEncoderOnlyConfig)
|
328 |
+
AutoModel.register(CustomTextEncoderOnlyConfig, CustomTextEncoderOnly)
|
329 |
+
CustomTextEncoderOnlyConfig.register_for_auto_class()
|
330 |
+
CustomTextEncoderOnly.register_for_auto_class("AutoModel")
|
331 |
+
|
332 |
+
if upload:
|
333 |
+
# Initialize the model
|
334 |
+
model_name = "google-bert/bert-base-uncased"
|
335 |
+
pretrained=True
|
336 |
+
frozen=False
|
337 |
+
output_hidden_size=512
|
338 |
+
last_hidden_state=False
|
339 |
+
|
340 |
+
lora=None
|
341 |
+
|
342 |
+
cfg = CustomTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, frozen=frozen, output_hidden_size=output_hidden_size, last_hidden_state=last_hidden_state, lora=lora)
|
343 |
+
model = CustomTextEncoderOnly(cfg)
|
344 |
+
model.push_to_hub("test-text-hf-upload")
|
345 |
+
|
346 |
+
model = CustomTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
347 |
+
|
348 |
+
def test_vision_model(register=False, upload=False):
|
349 |
+
# register the classes
|
350 |
+
if register:
|
351 |
+
AutoConfig.register("clip_custom_vision_model", CLIPVisionEncoderOnlyConfig)
|
352 |
+
AutoModel.register(CLIPVisionEncoderOnlyConfig, CLIPVisionEncoderOnly)
|
353 |
+
CLIPVisionEncoderOnlyConfig.register_for_auto_class()
|
354 |
+
CLIPVisionEncoderOnly.register_for_auto_class("AutoModel")
|
355 |
+
|
356 |
+
if upload:
|
357 |
+
# Initialize the model
|
358 |
+
model_name = "openai/clip-vit-base-patch32"
|
359 |
+
pretrained=True
|
360 |
+
lora=None
|
361 |
+
|
362 |
+
cfg = CLIPVisionEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
363 |
+
model = CLIPVisionEncoderOnly(cfg)
|
364 |
+
model.push_to_hub("test-vision-hf-upload")
|
365 |
+
|
366 |
+
model = CLIPVisionEncoderOnly.from_pretrained("mpatel57/test-vision-hf-upload", force_download=True)
|
367 |
+
|
368 |
+
|
369 |
+
if __name__ == "__main__":
|
370 |
+
test_custom_text_model(register=False, upload=True)
|
371 |
+
# test_text_model(register=False, upload=True)
|
372 |
+
# test_vision_model(register=False, upload=True)
|
vision-encoder/config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPVisionEncoderOnly"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "utils.CLIPVisionEncoderOnlyConfig",
|
7 |
+
"AutoModel": "utils.CLIPVisionEncoderOnly"
|
8 |
+
},
|
9 |
+
"frozen": false,
|
10 |
+
"lora": null,
|
11 |
+
"model_name": "openai/clip-vit-base-patch32",
|
12 |
+
"model_type": "clip_custom_vision_model",
|
13 |
+
"pretrained": false,
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.40.1"
|
16 |
+
}
|
vision-encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5c56fb96d02966dfd0587ab176d4f4f06c0e51e35ad4dcf6f9f1c4ab7fae88c
|
3 |
+
size 351421984
|
vision-encoder/utils.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig, CLIPTextConfig, CLIPVisionConfig, PreTrainedModel, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
2 |
+
from transformers.utils import ModelOutput
|
3 |
+
import torch
|
4 |
+
import open_clip
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import safetensors.torch
|
7 |
+
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
8 |
+
import os
|
9 |
+
|
10 |
+
HF_SAFE_WEIGHTS_NAME = "open_clip_model.safetensors"
|
11 |
+
HF_SAFE_WEIGHTS_NAME_PRIOR = "prior_model.safetensors"
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class PriorTransformerOutput(ModelOutput):
|
15 |
+
"""
|
16 |
+
The output of [`PriorTransformer`].
|
17 |
+
|
18 |
+
Args:
|
19 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
20 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
21 |
+
"""
|
22 |
+
|
23 |
+
predicted_image_embedding: torch.FloatTensor
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class TextEncoderOutput(ModelOutput):
|
27 |
+
"""
|
28 |
+
Output class for CLIPTextEncoderOnly model to store the outputs in a Hugging Face transformer style.
|
29 |
+
|
30 |
+
Attributes:
|
31 |
+
prompt_embeds (torch.Tensor): The embeddings of the input prompts.
|
32 |
+
last_hidden_states (torch.Tensor): The last hidden states from the model.
|
33 |
+
"""
|
34 |
+
text_embeds: torch.FloatTensor = None
|
35 |
+
last_hidden_state: torch.FloatTensor = None
|
36 |
+
|
37 |
+
class CLIPTextEncoderOnlyConfig(CLIPTextConfig):
|
38 |
+
model_type = "clip_custom_text_model"
|
39 |
+
|
40 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
41 |
+
self.model_name = model_name
|
42 |
+
self.pretrained = pretrained
|
43 |
+
self.frozen = frozen
|
44 |
+
self.lora = lora
|
45 |
+
super().__init__(**kwargs)
|
46 |
+
|
47 |
+
class CLIPTextEncoderOnly(PreTrainedModel):
|
48 |
+
config_class = CLIPTextEncoderOnlyConfig
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
"""
|
52 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
53 |
+
|
54 |
+
:param model_name: The name or path of the pretrained model.
|
55 |
+
:param pretrained: Whether to load the pretrained weights.
|
56 |
+
"""
|
57 |
+
super().__init__(config)
|
58 |
+
|
59 |
+
if config.pretrained:
|
60 |
+
self.model = CLIPTextModelWithProjection.from_pretrained(config.model_name)
|
61 |
+
else:
|
62 |
+
base_cfg = CLIPTextConfig.from_pretrained(config.model_name)
|
63 |
+
self.model = CLIPTextModelWithProjection(base_cfg)
|
64 |
+
|
65 |
+
if config.lora:
|
66 |
+
l_config = LoraConfig(
|
67 |
+
r=config.lora.lora_r,
|
68 |
+
lora_alpha=config.lora.lora_alpha,
|
69 |
+
target_modules=[
|
70 |
+
"k_proj",
|
71 |
+
"v_proj",
|
72 |
+
"q_proj",
|
73 |
+
"out_proj",
|
74 |
+
"fc1",
|
75 |
+
"fc2",
|
76 |
+
"visual_projection",
|
77 |
+
"text_projection"
|
78 |
+
],
|
79 |
+
lora_dropout=config.lora.lora_dropout,
|
80 |
+
bias="lora_only",
|
81 |
+
)
|
82 |
+
self.model = get_peft_model(self.model, l_config)
|
83 |
+
|
84 |
+
|
85 |
+
def forward(self, input_ids, attention_mask=None, position_ids=None):
|
86 |
+
"""
|
87 |
+
Forward pass of the model.
|
88 |
+
|
89 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
90 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
91 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
92 |
+
:return: Outputs of the model.
|
93 |
+
"""
|
94 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_hidden_states=True)
|
95 |
+
return TextEncoderOutput(text_embeds=outputs.text_embeds, last_hidden_state=outputs.last_hidden_state)
|
96 |
+
|
97 |
+
|
98 |
+
class CustomTextEncoderOnlyConfig(PretrainedConfig):
|
99 |
+
model_type = "whole_custom_text_model"
|
100 |
+
|
101 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, output_hidden_size: int = 512, last_hidden_state: bool = False, lora: dict = None, **kwargs):
|
102 |
+
self.model_name = model_name
|
103 |
+
self.pretrained = pretrained
|
104 |
+
self.frozen = frozen
|
105 |
+
self.output_hidden_size = output_hidden_size
|
106 |
+
self.last_hidden_state = last_hidden_state
|
107 |
+
self.lora = lora
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
|
110 |
+
class CustomTextEncoderOnly(PreTrainedModel):
|
111 |
+
config_class = CustomTextEncoderOnlyConfig
|
112 |
+
|
113 |
+
def __init__(self, config):
|
114 |
+
"""
|
115 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
116 |
+
|
117 |
+
:param model_name: The name or path of the pretrained model.
|
118 |
+
:param pretrained: Whether to load the pretrained weights.
|
119 |
+
"""
|
120 |
+
super().__init__(config)
|
121 |
+
|
122 |
+
self.last_hidden_state = config.last_hidden_state
|
123 |
+
|
124 |
+
if config.pretrained:
|
125 |
+
self.model = AutoModel.from_pretrained(config.model_name)
|
126 |
+
if config.frozen:
|
127 |
+
for param in self.model.parameters():
|
128 |
+
param.requires_grad = False
|
129 |
+
else:
|
130 |
+
self.model = AutoModel(config)
|
131 |
+
|
132 |
+
self.fc1 = torch.nn.Linear(self.model.config.hidden_size, config.output_hidden_size)
|
133 |
+
if config.last_hidden_state:
|
134 |
+
self.fc2 = torch.nn.Linear(self.model.config.hidden_size, config.output_hidden_size)
|
135 |
+
|
136 |
+
if config.lora:
|
137 |
+
l_config = LoraConfig(
|
138 |
+
task_type=TaskType.FEATURE_EXTRACTION,
|
139 |
+
r=config.lora.lora_r,
|
140 |
+
lora_alpha=config.lora.lora_alpha,
|
141 |
+
lora_dropout=config.lora.lora_dropout,
|
142 |
+
bias="lora_only",
|
143 |
+
)
|
144 |
+
self.model = get_peft_model(self.model, l_config)
|
145 |
+
|
146 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
147 |
+
"""
|
148 |
+
Forward pass of the model.
|
149 |
+
|
150 |
+
:param input_ids: Indices of input sequence tokens in the vocabulary.
|
151 |
+
:param attention_mask: Mask to avoid performing attention on padding token indices.
|
152 |
+
:param token_type_ids: Segment token indices to indicate first and second portions of the inputs.
|
153 |
+
:return: Outputs of the model.
|
154 |
+
"""
|
155 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True)
|
156 |
+
text_embeds = self.fc1(outputs[1])
|
157 |
+
last_hidden_state = None
|
158 |
+
if self.last_hidden_state:
|
159 |
+
last_hidden_state = self.fc2(outputs[0])
|
160 |
+
else:
|
161 |
+
last_hidden_state = outputs[0]
|
162 |
+
return TextEncoderOutput(text_embeds=text_embeds, last_hidden_state=last_hidden_state)
|
163 |
+
|
164 |
+
class CLIPVisionEncoderOnlyConfig(PretrainedConfig):
|
165 |
+
model_type = "clip_custom_vision_model"
|
166 |
+
|
167 |
+
def __init__(self, model_name: str = None, pretrained: bool = True, frozen: bool = False, lora: dict = None, **kwargs):
|
168 |
+
self.model_name = model_name
|
169 |
+
self.pretrained = pretrained
|
170 |
+
self.frozen = frozen
|
171 |
+
self.lora = lora
|
172 |
+
super().__init__(**kwargs)
|
173 |
+
|
174 |
+
class CLIPVisionEncoderOnly(PreTrainedModel):
|
175 |
+
config_class = CLIPVisionEncoderOnlyConfig
|
176 |
+
|
177 |
+
def __init__(self, config):
|
178 |
+
"""
|
179 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
180 |
+
|
181 |
+
:param model_name: The name or path of the pretrained model.
|
182 |
+
:param pretrained: Whether to load the pretrained weights.
|
183 |
+
"""
|
184 |
+
super().__init__(config)
|
185 |
+
|
186 |
+
if config.pretrained:
|
187 |
+
self.model = CLIPVisionModelWithProjection.from_pretrained(config.model_name)
|
188 |
+
else:
|
189 |
+
base_cfg = CLIPVisionConfig.from_pretrained(config.model_name)
|
190 |
+
self.model = CLIPVisionModelWithProjection(base_cfg)
|
191 |
+
|
192 |
+
if config.lora:
|
193 |
+
l_config = LoraConfig(
|
194 |
+
r=config.lora.lora_r,
|
195 |
+
lora_alpha=config.lora.lora_alpha,
|
196 |
+
target_modules=[
|
197 |
+
"k_proj",
|
198 |
+
"v_proj",
|
199 |
+
"q_proj",
|
200 |
+
"out_proj",
|
201 |
+
"fc1",
|
202 |
+
"fc2",
|
203 |
+
"visual_projection",
|
204 |
+
"text_projection"
|
205 |
+
],
|
206 |
+
lora_dropout=config.lora.lora_dropout,
|
207 |
+
bias="lora_only",
|
208 |
+
)
|
209 |
+
self.model = get_peft_model(self.model, l_config)
|
210 |
+
|
211 |
+
def forward(self, data):
|
212 |
+
"""
|
213 |
+
Forward pass of the model.
|
214 |
+
"""
|
215 |
+
return self.model(**data).image_embeds
|
216 |
+
|
217 |
+
def parameters(self):
|
218 |
+
return self.model.parameters()
|
219 |
+
|
220 |
+
|
221 |
+
class OpenCLIPVisionEncoderOnly(torch.nn.Module):
|
222 |
+
def __init__(self, model_name: str, pretrained: bool = True, frozen: bool = False, lora: dict = None):
|
223 |
+
"""
|
224 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
225 |
+
|
226 |
+
:param model_name: The name or path of the pretrained model.
|
227 |
+
:param pretrained: Whether to load the pretrained weights.
|
228 |
+
"""
|
229 |
+
super().__init__()
|
230 |
+
if pretrained:
|
231 |
+
model, _ = open_clip.create_model_from_pretrained(f"hf-hub:{model_name}")
|
232 |
+
model = model.visual
|
233 |
+
else:
|
234 |
+
raise NotImplemented
|
235 |
+
self.model = model
|
236 |
+
|
237 |
+
if lora:
|
238 |
+
l_config = LoraConfig(
|
239 |
+
r=lora.lora_r,
|
240 |
+
lora_alpha=lora.lora_alpha,
|
241 |
+
target_modules=[
|
242 |
+
"k_proj",
|
243 |
+
"v_proj",
|
244 |
+
"q_proj",
|
245 |
+
"out_proj",
|
246 |
+
"fc1",
|
247 |
+
"fc2",
|
248 |
+
"visual_projection",
|
249 |
+
"text_projection"
|
250 |
+
],
|
251 |
+
lora_dropout=lora.lora_dropout,
|
252 |
+
bias="lora_only",
|
253 |
+
)
|
254 |
+
self.model = get_peft_model(self.model, l_config)
|
255 |
+
|
256 |
+
def forward(self, image):
|
257 |
+
"""
|
258 |
+
Forward pass of the model.
|
259 |
+
"""
|
260 |
+
return self.model(image)
|
261 |
+
|
262 |
+
def save_pretrained(self, save_dir):
|
263 |
+
tensors = self.model.state_dict()
|
264 |
+
safetensors.torch.save_file(tensors, save_dir / HF_SAFE_WEIGHTS_NAME)
|
265 |
+
|
266 |
+
class CustomPriorModel(torch.nn.Module):
|
267 |
+
def __init__(self, in_hidden_state, out_hidden_state):
|
268 |
+
"""
|
269 |
+
Initializes the Hugging Face text encoder for CLIP model, inheriting from PreTrainedModel.
|
270 |
+
|
271 |
+
:param model_name: The name or path of the pretrained model.
|
272 |
+
:param pretrained: Whether to load the pretrained weights.
|
273 |
+
"""
|
274 |
+
super().__init__()
|
275 |
+
mid_hidden_state = max(in_hidden_state, out_hidden_state)
|
276 |
+
|
277 |
+
self.fc1 = torch.nn.Linear(in_hidden_state*2, mid_hidden_state)
|
278 |
+
self.relu = torch.nn.ReLU()
|
279 |
+
self.fc2 = torch.nn.Linear(mid_hidden_state, out_hidden_state)
|
280 |
+
|
281 |
+
def reinitialize_model(self):
|
282 |
+
for name, param in self.named_parameters():
|
283 |
+
if param.requires_grad:
|
284 |
+
if len(param.shape) > 1:
|
285 |
+
torch.nn.init.xavier_uniform_(param)
|
286 |
+
else:
|
287 |
+
if 'weight' in name:
|
288 |
+
torch.nn.init.normal_(param)
|
289 |
+
else:
|
290 |
+
torch.nn.init.zeros_(param)
|
291 |
+
|
292 |
+
def forward(self, feats):
|
293 |
+
"""
|
294 |
+
Forward pass of the model.
|
295 |
+
"""
|
296 |
+
return PriorTransformerOutput(predicted_image_embedding=self.fc2(self.relu(self.fc1(feats))))
|
297 |
+
|
298 |
+
def save_pretrained(self, save_dir):
|
299 |
+
pass
|
300 |
+
# tensors = self.state_dict()
|
301 |
+
# safetensors.torch.save_file(tensors, os.path.join(save_dir, HF_SAFE_WEIGHTS_NAME_PRIOR))
|
302 |
+
|
303 |
+
|
304 |
+
def test_text_model(register=False, upload=False):
|
305 |
+
# register the classes
|
306 |
+
if register:
|
307 |
+
AutoConfig.register("clip_custom_text_model", CLIPTextEncoderOnlyConfig)
|
308 |
+
AutoModel.register(CLIPTextEncoderOnlyConfig, CLIPTextEncoderOnly)
|
309 |
+
CLIPTextEncoderOnlyConfig.register_for_auto_class()
|
310 |
+
CLIPTextEncoderOnly.register_for_auto_class("AutoModel")
|
311 |
+
|
312 |
+
if upload:
|
313 |
+
# Initialize the model
|
314 |
+
model_name = "openai/clip-vit-base-patch32"
|
315 |
+
pretrained=True
|
316 |
+
lora=None
|
317 |
+
|
318 |
+
cfg = CLIPTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
319 |
+
model = CLIPTextEncoderOnly(cfg)
|
320 |
+
model.push_to_hub("test-text-hf-upload")
|
321 |
+
|
322 |
+
model = CLIPTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
323 |
+
|
324 |
+
def test_custom_text_model(register=False, upload=False):
|
325 |
+
# register the classes
|
326 |
+
if register:
|
327 |
+
AutoConfig.register("whole_custom_text_model", CustomTextEncoderOnlyConfig)
|
328 |
+
AutoModel.register(CustomTextEncoderOnlyConfig, CustomTextEncoderOnly)
|
329 |
+
CustomTextEncoderOnlyConfig.register_for_auto_class()
|
330 |
+
CustomTextEncoderOnly.register_for_auto_class("AutoModel")
|
331 |
+
|
332 |
+
if upload:
|
333 |
+
# Initialize the model
|
334 |
+
model_name = "google-bert/bert-base-uncased"
|
335 |
+
pretrained=True
|
336 |
+
frozen=False
|
337 |
+
output_hidden_size=512
|
338 |
+
last_hidden_state=False
|
339 |
+
|
340 |
+
lora=None
|
341 |
+
|
342 |
+
cfg = CustomTextEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, frozen=frozen, output_hidden_size=output_hidden_size, last_hidden_state=last_hidden_state, lora=lora)
|
343 |
+
model = CustomTextEncoderOnly(cfg)
|
344 |
+
model.push_to_hub("test-text-hf-upload")
|
345 |
+
|
346 |
+
model = CustomTextEncoderOnly.from_pretrained("mpatel57/test-text-hf-upload", force_download=True)
|
347 |
+
|
348 |
+
def test_vision_model(register=False, upload=False):
|
349 |
+
# register the classes
|
350 |
+
if register:
|
351 |
+
AutoConfig.register("clip_custom_vision_model", CLIPVisionEncoderOnlyConfig)
|
352 |
+
AutoModel.register(CLIPVisionEncoderOnlyConfig, CLIPVisionEncoderOnly)
|
353 |
+
CLIPVisionEncoderOnlyConfig.register_for_auto_class()
|
354 |
+
CLIPVisionEncoderOnly.register_for_auto_class("AutoModel")
|
355 |
+
|
356 |
+
if upload:
|
357 |
+
# Initialize the model
|
358 |
+
model_name = "openai/clip-vit-base-patch32"
|
359 |
+
pretrained=True
|
360 |
+
lora=None
|
361 |
+
|
362 |
+
cfg = CLIPVisionEncoderOnlyConfig(model_name=model_name, pretrained=pretrained, lora=lora)
|
363 |
+
model = CLIPVisionEncoderOnly(cfg)
|
364 |
+
model.push_to_hub("test-vision-hf-upload")
|
365 |
+
|
366 |
+
model = CLIPVisionEncoderOnly.from_pretrained("mpatel57/test-vision-hf-upload", force_download=True)
|
367 |
+
|
368 |
+
|
369 |
+
if __name__ == "__main__":
|
370 |
+
test_custom_text_model(register=False, upload=True)
|
371 |
+
# test_text_model(register=False, upload=True)
|
372 |
+
# test_vision_model(register=False, upload=True)
|