File size: 4,018 Bytes
da6e2b6 e8037ce da6e2b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
license: apache-2.0
language:
- en
base_model: FourOhFour/Tulu-3.69-DPO-8B
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`FourOhFour/Tulu-3.69-DPO-8B`](https://huggingface.co/FourOhFour/Tulu-3.69-DPO-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/FourOhFour/Tulu-3.69-DPO-8B) for more details on the model.
---
Model details:
-
This is a DPO applied over Tulu-3.69-8B. This model is designed to
roleplay and converse like a human chat partner. This model follows
instructions well and excels at playing characters in a realistic and
entertaining manner.
For ease of use, try the Llama 3 instruct format. You may need to set a custom stop string for <|end_of_text|>
For optimal performance I have found that a modified Tulu 3 instruct format is quite effective:
<|system|>
This is an instruction.
<|end_of_text|>
<|user|>
This is the user input.
<|assistant|>
This is model output.
<|end_of_text|>
Further, if you want your bot to have a sense of time, you can set the last output prefix as such:
<|system|>
{{time}} {{weekday}} {{date}}
<|end_of_text|>
<|assistant|>
Note: these macros may differ in your chosen inferencing frontend. Please correct accordingly.
base_model: jeiku/Tulu-3.69-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
hub_model_id: jeiku/tuludpo
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
chat_template: llama3
rl: dpo
datasets:
- path: antiven0m/physical-reasoning-dpo
type: llama3.prompt_pairs
- path: nbeerbower/Purpura-DPO
type: llama3.prompt_pairs
- path: FourOhFour/Human_DPO_Emojis_Removed
type: llama3.prompt_pairs
shuffle_merged_datasets: true
val_set_size: 0.005
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
wandb_project: evil
wandb_entity:
wandb_watch:
wandb_name: evil
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed:
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048
```
|