File size: 4,018 Bytes
da6e2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
e8037ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da6e2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
license: apache-2.0
language:
- en
base_model: FourOhFour/Tulu-3.69-DPO-8B
tags:
- llama-cpp
- gguf-my-repo
---

# Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`FourOhFour/Tulu-3.69-DPO-8B`](https://huggingface.co/FourOhFour/Tulu-3.69-DPO-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/FourOhFour/Tulu-3.69-DPO-8B) for more details on the model.

---
Model details:
-
This is a DPO applied over Tulu-3.69-8B. This model is designed to 
roleplay and converse like a human chat partner. This model follows 
instructions well and excels at playing characters in a realistic and 
entertaining manner.


For ease of use, try the Llama 3 instruct format. You may need to set a custom stop string for <|end_of_text|>


For optimal performance I have found that a modified Tulu 3 instruct format is quite effective:


<|system|>


This is an instruction.


<|end_of_text|>


<|user|>


This is the user input.


<|assistant|>


This is model output.


<|end_of_text|>


Further, if you want your bot to have a sense of time, you can set the last output prefix as such:


<|system|>


{{time}} {{weekday}} {{date}}


<|end_of_text|>


<|assistant|>


Note: these macros may differ in your chosen inferencing frontend. Please correct accordingly.


base_model: jeiku/Tulu-3.69-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: jeiku/tuludpo
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

chat_template: llama3
rl: dpo
datasets:
  - path: antiven0m/physical-reasoning-dpo
    type: llama3.prompt_pairs
  - path: nbeerbower/Purpura-DPO
    type: llama3.prompt_pairs
  - path: FourOhFour/Human_DPO_Emojis_Removed
    type: llama3.prompt_pairs

shuffle_merged_datasets: true
val_set_size: 0.005
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false

wandb_project: evil
wandb_entity:
wandb_watch:
wandb_name: evil
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: 
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 
saves_per_epoch: 1

debug:
deepspeed:
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Tulu-3.69-DPO-8B-Q4_K_M-GGUF --hf-file tulu-3.69-dpo-8b-q4_k_m.gguf -c 2048
```