Triangle104 commited on
Commit
f8bc56e
1 Parent(s): cdc6fd3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +0 -81
README.md CHANGED
@@ -18,87 +18,6 @@ tags:
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-3B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-3B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-3B-Instruct-abliterated) for more details on the model.
20
 
21
- ---
22
- Model details:
23
- -
24
- This is an uncensored version of Qwen2.5-3B-Instruct created with abliteration (see this article to know more about it).
25
-
26
- Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.
27
-
28
- Usage
29
- -
30
- You can use this model in your applications by loading it with Hugging Face's transformers library:
31
-
32
- from transformers import AutoModelForCausalLM, AutoTokenizer
33
-
34
- # Load the model and tokenizer
35
- model_name = "huihui-ai/Qwen2.5-3B-Instruct-abliterated"
36
- model = AutoModelForCausalLM.from_pretrained(
37
- model_name,
38
- torch_dtype="auto",
39
- device_map="auto"
40
- )
41
- tokenizer = AutoTokenizer.from_pretrained(model_name)
42
-
43
- # Initialize conversation context
44
- initial_messages = [
45
- {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
46
- ]
47
- messages = initial_messages.copy() # Copy the initial conversation context
48
-
49
- # Enter conversation loop
50
- while True:
51
- # Get user input
52
- user_input = input("User: ").strip() # Strip leading and trailing spaces
53
-
54
- # If the user types '/exit', end the conversation
55
- if user_input.lower() == "/exit":
56
- print("Exiting chat.")
57
- break
58
-
59
- # If the user types '/clean', reset the conversation context
60
- if user_input.lower() == "/clean":
61
- messages = initial_messages.copy() # Reset conversation context
62
- print("Chat history cleared. Starting a new conversation.")
63
- continue
64
-
65
- # If input is empty, prompt the user and continue
66
- if not user_input:
67
- print("Input cannot be empty. Please enter something.")
68
- continue
69
-
70
- # Add user input to the conversation
71
- messages.append({"role": "user", "content": user_input})
72
-
73
- # Build the chat template
74
- text = tokenizer.apply_chat_template(
75
- messages,
76
- tokenize=False,
77
- add_generation_prompt=True
78
- )
79
-
80
- # Tokenize input and prepare it for the model
81
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
82
-
83
- # Generate a response from the model
84
- generated_ids = model.generate(
85
- **model_inputs,
86
- max_new_tokens=8192
87
- )
88
-
89
- # Extract model output, removing special tokens
90
- generated_ids = [
91
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
92
- ]
93
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
94
-
95
- # Add the model's response to the conversation
96
- messages.append({"role": "assistant", "content": response})
97
-
98
- # Print the model's response
99
- print(f"Qwen: {response}")
100
-
101
- ---
102
  ## Use with llama.cpp
103
  Install llama.cpp through brew (works on Mac and Linux)
104
 
 
18
  This model was converted to GGUF format from [`huihui-ai/Qwen2.5-3B-Instruct-abliterated`](https://huggingface.co/huihui-ai/Qwen2.5-3B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
19
  Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-3B-Instruct-abliterated) for more details on the model.
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  ## Use with llama.cpp
22
  Install llama.cpp through brew (works on Mac and Linux)
23