File size: 4,257 Bytes
f8e5dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
base_model: AI-MO/NuminaMath-7B-TIR
license: apache-2.0
pipeline_tag: text-generation
tags:
- alignment-handbook
- generated_from_trainer
- llama-cpp
- gguf-my-repo
widget:
- example_title: Math problem
  messages:
  - role: user
    content: For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
      have two distinct integer roots?
  output:
    text: "### Solution: \n1- For the polynomial \\\\( x^2 + kx + 36 \\\\) to have\
      \ two distinct integer roots, let's denote these roots by \\\\( r_1 \\\\) and\
      \ \\\\( r_2 \\\\).\n\n\n2- According to Vieta's formulas, the sum of the roots\
      \ \\\\( r_1 + r_2 \\\\) is equal to \\\\(-k\\\\), and the product of the roots\
      \ \\\\( r_1 \\\\cdot r_2 \\\\) is equal to 36.\n\n\n3- To find the distinct\
      \ integer pairs \\\\((r_1, r_2)\\\\) whose product is 36, we need to determine\
      \ all pairs of integers \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2\
      \ = 36 \\\\) and \\\\( r_1 \\\\neq r_2 \\\\).\n\n\n4- From the equation \\\\\
      ( r_1 + r_2 = -k \\\\), for each valid pair \\\\((r_1, r_2)\\\\), we can compute\
      \ the corresponding value of \\\\( k \\\\).\n\n\n5- Finally, since we need the\
      \ polynomial to have two distinct integer roots, we need to ensure that \\\\\
      ( r_1 \\\\) and \\\\( r_2 \\\\) are distinct.\nLet's start by finding all pairs\
      \ \\\\((r_1, r_2)\\\\) such that \\\\( r_1 \\\\cdot r_2 = 36 \\\\). We'll then\
      \ determine the values of \\\\( k \\\\) and ensure the roots are distinct.\n\
      ```python import itertools\n# Find all pairs (r1, r2) such that r1 * r2 = 36\
      \ product_36 = 36 factor_pairs = []\nfor i in range(1, product_36 + 1):\n  if\
      \ product_36 % i == 0:\n    pair = (i, product_36 // i)\n    if pair[0] != pair[1]:\
      \ # Ensure distinct pairs\n      factor_pairs.append(pair)\n    \n    # Calculate\
      \ k for each pair and ensure distinct integer roots\n    valid_k_values = set()\n\
      \    for r1, r2 in factor_pairs:\n      if r1 != r2:\n        k = -(r1 + r2)\n\
      \        valid_k_values.add(k)\n        \n    print((len(valid_k_values), sorted(valid_k_values)))\n\
      \ ```\n \n ```output\n (4, [-37, -20, -15,-13])\n ```\n The distinct integer\
      \ values of \\\\( k \\\\) that make the\npolynomial \\\\( x^2 + kx + 36 \\\\\
      ) have two distinct integer roots are \\\\(-37, -20, -15, \\\\text{and} -13\\\
      \\).\nTherefore, the number of such values of \\\\( k \\\\) is:\n[ \\\\boxed{4}\
      \ \\\\]"
model-index:
- name: NuminaMath-7B-TIR
  results: []
---

# Triangle104/NuminaMath-7B-TIR-Q5_0-GGUF
This model was converted to GGUF format from [`AI-MO/NuminaMath-7B-TIR`](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/NuminaMath-7B-TIR-Q5_0-GGUF --hf-file numinamath-7b-tir-q5_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/NuminaMath-7B-TIR-Q5_0-GGUF --hf-file numinamath-7b-tir-q5_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/NuminaMath-7B-TIR-Q5_0-GGUF --hf-file numinamath-7b-tir-q5_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/NuminaMath-7B-TIR-Q5_0-GGUF --hf-file numinamath-7b-tir-q5_0.gguf -c 2048
```