File size: 8,288 Bytes
eb8c013
 
 
 
 
 
 
 
 
 
 
 
 
 
61113e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c013
 
 
 
 
 
2d9d59b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8c013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
base_model: Locutusque/Hercules-6.1-Llama-3.1-8B
datasets:
- Locutusque/hercules-v6.1
language:
- en
- zh
library_name: transformers
license: llama3.1
pipeline_tag: text-generation
tags:
- not-for-all-audiences
- llama-cpp
- gguf-my-repo
model-index:
- name: Hercules-6.1-Llama-3.1-8B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 60.07
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 24.15
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 15.63
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.45
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 3.42
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 29.65
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
      name: Open LLM Leaderboard
---

# Triangle104/Hercules-6.1-Llama-3.1-8B-Q4_K_S-GGUF
This model was converted to GGUF format from [`Locutusque/Hercules-6.1-Llama-3.1-8B`](https://huggingface.co/Locutusque/Hercules-6.1-Llama-3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Locutusque/Hercules-6.1-Llama-3.1-8B) for more details on the model.

---
Model details:
-

Hercules-6.1-Llama-3.1-8B is a fine-tuned language model derived from Llama-3.1-8B. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. This fine-tuning has hercules-v6.1 with enhanced abilities in:

    Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology.
    Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values.
    Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more.

Intended Uses & Potential Bias

Hercules-6.1-Llama-3.1-8B is well-suited to the following applications:

    Specialized Chatbots: Creating knowledgeable chatbots and conversational agents in scientific and technical fields.
    Instructional Assistants: Supporting users with educational and step-by-step guidance in various disciplines.
    Code Generation and Execution: Facilitating code execution through function calls, aiding in software development and prototyping.

Important Note: Although Hercules-v6.1 is carefully constructed, it's important to be aware that the underlying data sources may contain biases or reflect harmful stereotypes. Use this model with caution and consider additional measures to mitigate potential biases in its responses.
Limitations and Risks

    Toxicity: The dataset contains toxic or harmful examples.
    Hallucinations and Factual Errors: Like other language models, Llama-3-Hercules-6.0-8B may generate incorrect or misleading information, especially in specialized domains where it lacks sufficient expertise.
    Potential for Misuse: The ability to engage in technical conversations and execute function calls could be misused for malicious purposes.

Evaluations
Tasks 	Version 	Filter 	n-shot 	Metric 		Value 		Stderr
agieval_nous 	0.0 	none 		acc 	↑ 	0.4427 	± 	0.0094
- agieval_aqua_rat 	1.0 	none 	0 	acc 	↑ 	0.2913 	± 	0.0286
		none 	0 	acc_norm 	↑ 	0.2480 	± 	0.0272
- agieval_logiqa_en 	1.0 	none 	0 	acc 	↑ 	0.3825 	± 	0.0191
		none 	0 	acc_norm 	↑ 	0.3794 	± 	0.0190
- agieval_lsat_ar 	1.0 	none 	0 	acc 	↑ 	0.2087 	± 	0.0269
		none 	0 	acc_norm 	↑ 	0.2043 	± 	0.0266
- agieval_lsat_lr 	1.0 	none 	0 	acc 	↑ 	0.4431 	± 	0.0220
		none 	0 	acc_norm 	↑ 	0.4000 	± 	0.0217
- agieval_lsat_rc 	1.0 	none 	0 	acc 	↑ 	0.6097 	± 	0.0298
		none 	0 	acc_norm 	↑ 	0.5428 	± 	0.0304
- agieval_sat_en 	1.0 	none 	0 	acc 	↑ 	0.7621 	± 	0.0297
		none 	0 	acc_norm 	↑ 	0.6942 	± 	0.0322
- agieval_sat_en_without_passage 	1.0 	none 	0 	acc 	↑ 	0.4126 	± 	0.0344
		none 	0 	acc_norm 	↑ 	0.3641 	± 	0.0336
- agieval_sat_math 	1.0 	none 	0 	acc 	↑ 	0.4318 	± 	0.0335
		none 	0 	acc_norm 	↑ 	0.3500 	± 	0.0322
arc_challenge 	1.0 	none 	0 	acc 	↑ 	0.5247 	± 	0.0146
		none 	0 	acc_norm 	↑ 	0.5606 	± 	0.0145
eq_bench 	2.1 	none 	0 	eqbench 	↑ 	63.2023 	± 	2.6818
		none 	0 	percent_parseable 	↑ 	98.8304 	± 	0.8246
gsm8k 	3.0 	flexible-extract 	5 	exact_match 	↑ 	0.7801 	± 	0.0114
		strict-match 	5 	exact_match 	↑ 	0.7809 	± 	0.0114
truthfulqa_mc2 	2.0 	none 	0 	acc 	↑ 	0.5389 	± 	0.0150
Open LLM Leaderboard Evaluation Results

Detailed results can be found here
Metric 	Value
Avg. 	22.40
IFEval (0-Shot) 	60.07
BBH (3-Shot) 	24.15
MATH Lvl 5 (4-Shot) 	15.63
GPQA (0-shot) 	1.45
MuSR (0-shot) 	3.42
MMLU-PRO (5-shot) 	29.65

---

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Hercules-6.1-Llama-3.1-8B-Q4_K_S-GGUF --hf-file hercules-6.1-llama-3.1-8b-q4_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Hercules-6.1-Llama-3.1-8B-Q4_K_S-GGUF --hf-file hercules-6.1-llama-3.1-8b-q4_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Hercules-6.1-Llama-3.1-8B-Q4_K_S-GGUF --hf-file hercules-6.1-llama-3.1-8b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Hercules-6.1-Llama-3.1-8B-Q4_K_S-GGUF --hf-file hercules-6.1-llama-3.1-8b-q4_k_s.gguf -c 2048
```