Delete modeling_chatglm.py
Browse files- modeling_chatglm.py +0 -1261
modeling_chatglm.py
DELETED
@@ -1,1261 +0,0 @@
|
|
1 |
-
""" PyTorch ChatGLM model. """
|
2 |
-
|
3 |
-
import math
|
4 |
-
import copy
|
5 |
-
import os
|
6 |
-
import warnings
|
7 |
-
import re
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.utils.checkpoint
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from torch import nn
|
13 |
-
from torch.nn import CrossEntropyLoss, LayerNorm
|
14 |
-
from torch.nn.utils import skip_init
|
15 |
-
from typing import Optional, Tuple, Union, List, Callable
|
16 |
-
|
17 |
-
from transformers.utils import (
|
18 |
-
add_code_sample_docstrings,
|
19 |
-
add_start_docstrings,
|
20 |
-
add_start_docstrings_to_model_forward,
|
21 |
-
)
|
22 |
-
from transformers.modeling_outputs import (
|
23 |
-
BaseModelOutputWithPast,
|
24 |
-
CausalLMOutputWithPast,
|
25 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
26 |
-
)
|
27 |
-
from transformers.modeling_utils import PreTrainedModel
|
28 |
-
from transformers.utils import logging
|
29 |
-
from transformers.generation.logits_process import LogitsProcessor
|
30 |
-
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
31 |
-
|
32 |
-
from .configuration_chatglm import ChatGLMConfig
|
33 |
-
|
34 |
-
# flags required to enable jit fusion kernels
|
35 |
-
torch._C._jit_set_profiling_mode(False)
|
36 |
-
torch._C._jit_set_profiling_executor(False)
|
37 |
-
torch._C._jit_override_can_fuse_on_cpu(True)
|
38 |
-
torch._C._jit_override_can_fuse_on_gpu(True)
|
39 |
-
|
40 |
-
logger = logging.get_logger(__name__)
|
41 |
-
|
42 |
-
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
43 |
-
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
44 |
-
|
45 |
-
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
46 |
-
"THUDM/chatglm-6b",
|
47 |
-
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
48 |
-
]
|
49 |
-
|
50 |
-
|
51 |
-
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
52 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
53 |
-
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
54 |
-
scores.zero_()
|
55 |
-
scores[..., 20005] = 5e4
|
56 |
-
return scores
|
57 |
-
|
58 |
-
|
59 |
-
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
60 |
-
"""Load tf checkpoints in a pytorch model."""
|
61 |
-
try:
|
62 |
-
import re
|
63 |
-
|
64 |
-
import numpy as np
|
65 |
-
import tensorflow as tf
|
66 |
-
except ImportError:
|
67 |
-
logger.error(
|
68 |
-
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
69 |
-
"https://www.tensorflow.org/install/ for installation instructions."
|
70 |
-
)
|
71 |
-
raise
|
72 |
-
tf_path = os.path.abspath(tf_checkpoint_path)
|
73 |
-
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
74 |
-
# Load weights from TF model
|
75 |
-
init_vars = tf.train.list_variables(tf_path)
|
76 |
-
names = []
|
77 |
-
arrays = []
|
78 |
-
for name, shape in init_vars:
|
79 |
-
logger.info(f"Loading TF weight {name} with shape {shape}")
|
80 |
-
array = tf.train.load_variable(tf_path, name)
|
81 |
-
names.append(name)
|
82 |
-
arrays.append(array)
|
83 |
-
|
84 |
-
for name, array in zip(names, arrays):
|
85 |
-
name = name.split("/")
|
86 |
-
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
87 |
-
# which are not required for using pretrained model
|
88 |
-
if any(
|
89 |
-
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
90 |
-
for n in name
|
91 |
-
):
|
92 |
-
logger.info(f"Skipping {'/'.join(name)}")
|
93 |
-
continue
|
94 |
-
pointer = model
|
95 |
-
for m_name in name:
|
96 |
-
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
97 |
-
scope_names = re.split(r"_(\d+)", m_name)
|
98 |
-
else:
|
99 |
-
scope_names = [m_name]
|
100 |
-
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
101 |
-
pointer = getattr(pointer, "weight")
|
102 |
-
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
103 |
-
pointer = getattr(pointer, "bias")
|
104 |
-
elif scope_names[0] == "output_weights":
|
105 |
-
pointer = getattr(pointer, "weight")
|
106 |
-
elif scope_names[0] == "squad":
|
107 |
-
pointer = getattr(pointer, "classifier")
|
108 |
-
else:
|
109 |
-
try:
|
110 |
-
pointer = getattr(pointer, scope_names[0])
|
111 |
-
except AttributeError:
|
112 |
-
logger.info(f"Skipping {'/'.join(name)}")
|
113 |
-
continue
|
114 |
-
if len(scope_names) >= 2:
|
115 |
-
num = int(scope_names[1])
|
116 |
-
pointer = pointer[num]
|
117 |
-
if m_name[-11:] == "_embeddings":
|
118 |
-
pointer = getattr(pointer, "weight")
|
119 |
-
elif m_name == "kernel":
|
120 |
-
array = np.transpose(array)
|
121 |
-
try:
|
122 |
-
assert (
|
123 |
-
pointer.shape == array.shape
|
124 |
-
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
125 |
-
except AssertionError as e:
|
126 |
-
e.args += (pointer.shape, array.shape)
|
127 |
-
raise
|
128 |
-
logger.info(f"Initialize PyTorch weight {name}")
|
129 |
-
pointer.data = torch.from_numpy(array)
|
130 |
-
return model
|
131 |
-
|
132 |
-
|
133 |
-
@torch.jit.script
|
134 |
-
def gelu_impl(x):
|
135 |
-
"""OpenAI's gelu implementation."""
|
136 |
-
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
137 |
-
(1.0 + 0.044715 * x * x)))
|
138 |
-
|
139 |
-
|
140 |
-
def gelu(x):
|
141 |
-
return gelu_impl(x)
|
142 |
-
|
143 |
-
|
144 |
-
class RotaryEmbedding(torch.nn.Module):
|
145 |
-
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
146 |
-
super().__init__()
|
147 |
-
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
148 |
-
inv_freq = inv_freq.half()
|
149 |
-
self.learnable = learnable
|
150 |
-
if learnable:
|
151 |
-
self.inv_freq = torch.nn.Parameter(inv_freq)
|
152 |
-
self.max_seq_len_cached = None
|
153 |
-
else:
|
154 |
-
self.register_buffer('inv_freq', inv_freq)
|
155 |
-
self.max_seq_len_cached = None
|
156 |
-
self.cos_cached = None
|
157 |
-
self.sin_cached = None
|
158 |
-
self.precision = precision
|
159 |
-
|
160 |
-
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
161 |
-
error_msgs):
|
162 |
-
pass
|
163 |
-
|
164 |
-
def forward(self, x, seq_dim=1, seq_len=None):
|
165 |
-
if seq_len is None:
|
166 |
-
seq_len = x.shape[seq_dim]
|
167 |
-
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
168 |
-
self.max_seq_len_cached = None if self.learnable else seq_len
|
169 |
-
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
170 |
-
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
171 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
172 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
173 |
-
if self.precision == torch.bfloat16:
|
174 |
-
emb = emb.float()
|
175 |
-
|
176 |
-
# [sx, 1 (b * np), hn]
|
177 |
-
cos_cached = emb.cos()[:, None, :]
|
178 |
-
sin_cached = emb.sin()[:, None, :]
|
179 |
-
if self.precision == torch.bfloat16:
|
180 |
-
cos_cached = cos_cached.bfloat16()
|
181 |
-
sin_cached = sin_cached.bfloat16()
|
182 |
-
if self.learnable:
|
183 |
-
return cos_cached, sin_cached
|
184 |
-
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
185 |
-
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
186 |
-
|
187 |
-
|
188 |
-
def rotate_half(x):
|
189 |
-
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
190 |
-
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
191 |
-
|
192 |
-
|
193 |
-
@torch.jit.script
|
194 |
-
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
195 |
-
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
196 |
-
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
197 |
-
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
198 |
-
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
199 |
-
return q, k
|
200 |
-
|
201 |
-
|
202 |
-
def attention_fn(
|
203 |
-
self,
|
204 |
-
query_layer,
|
205 |
-
key_layer,
|
206 |
-
value_layer,
|
207 |
-
attention_mask,
|
208 |
-
hidden_size_per_partition,
|
209 |
-
layer_id,
|
210 |
-
layer_past=None,
|
211 |
-
scaling_attention_score=True,
|
212 |
-
use_cache=False,
|
213 |
-
):
|
214 |
-
if layer_past is not None:
|
215 |
-
past_key, past_value = layer_past
|
216 |
-
key_layer = torch.cat((past_key, key_layer), dim=0)
|
217 |
-
value_layer = torch.cat((past_value, value_layer), dim=0)
|
218 |
-
|
219 |
-
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
220 |
-
seq_len, b, nh, hidden_size = key_layer.shape
|
221 |
-
|
222 |
-
if use_cache:
|
223 |
-
present = (key_layer, value_layer)
|
224 |
-
else:
|
225 |
-
present = None
|
226 |
-
|
227 |
-
query_key_layer_scaling_coeff = float(layer_id + 1)
|
228 |
-
if scaling_attention_score:
|
229 |
-
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
230 |
-
|
231 |
-
# ===================================
|
232 |
-
# Raw attention scores. [b, np, s, s]
|
233 |
-
# ===================================
|
234 |
-
|
235 |
-
# [b, np, sq, sk]
|
236 |
-
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
237 |
-
|
238 |
-
# [sq, b, np, hn] -> [sq, b * np, hn]
|
239 |
-
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
240 |
-
# [sk, b, np, hn] -> [sk, b * np, hn]
|
241 |
-
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
242 |
-
|
243 |
-
matmul_result = torch.empty(
|
244 |
-
output_size[0] * output_size[1],
|
245 |
-
output_size[2],
|
246 |
-
output_size[3],
|
247 |
-
dtype=query_layer.dtype,
|
248 |
-
device=query_layer.device,
|
249 |
-
)
|
250 |
-
|
251 |
-
matmul_result = torch.baddbmm(
|
252 |
-
matmul_result,
|
253 |
-
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
254 |
-
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
255 |
-
beta=0.0,
|
256 |
-
alpha=1.0,
|
257 |
-
)
|
258 |
-
|
259 |
-
# change view to [b, np, sq, sk]
|
260 |
-
attention_scores = matmul_result.view(*output_size)
|
261 |
-
|
262 |
-
if self.scale_mask_softmax:
|
263 |
-
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
264 |
-
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
265 |
-
else:
|
266 |
-
if not (attention_mask == 0).all():
|
267 |
-
# if auto-regressive, skip
|
268 |
-
attention_scores.masked_fill_(attention_mask, -10000.0)
|
269 |
-
dtype = attention_scores.type()
|
270 |
-
attention_scores = attention_scores.float()
|
271 |
-
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
272 |
-
|
273 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
274 |
-
|
275 |
-
attention_probs = attention_probs.type(dtype)
|
276 |
-
|
277 |
-
# =========================
|
278 |
-
# Context layer. [sq, b, hp]
|
279 |
-
# =========================
|
280 |
-
|
281 |
-
# value_layer -> context layer.
|
282 |
-
# [sk, b, np, hn] --> [b, np, sq, hn]
|
283 |
-
|
284 |
-
# context layer shape: [b, np, sq, hn]
|
285 |
-
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
286 |
-
|
287 |
-
# change view [sk, b * np, hn]
|
288 |
-
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
289 |
-
|
290 |
-
# change view [b * np, sq, sk]
|
291 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
292 |
-
|
293 |
-
# matmul: [b * np, sq, hn]
|
294 |
-
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
295 |
-
|
296 |
-
# change view [b, np, sq, hn]
|
297 |
-
context_layer = context_layer.view(*output_size)
|
298 |
-
|
299 |
-
# [b, np, sq, hn] --> [sq, b, np, hn]
|
300 |
-
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
301 |
-
|
302 |
-
# [sq, b, np, hn] --> [sq, b, hp]
|
303 |
-
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
304 |
-
context_layer = context_layer.view(*new_context_layer_shape)
|
305 |
-
|
306 |
-
outputs = (context_layer, present, attention_probs)
|
307 |
-
|
308 |
-
return outputs
|
309 |
-
|
310 |
-
|
311 |
-
class SelfAttention(torch.nn.Module):
|
312 |
-
def __init__(self, hidden_size, num_attention_heads,
|
313 |
-
layer_id, hidden_size_per_attention_head=None, bias=True,
|
314 |
-
params_dtype=torch.float, position_encoding_2d=True):
|
315 |
-
super(SelfAttention, self).__init__()
|
316 |
-
|
317 |
-
self.layer_id = layer_id
|
318 |
-
self.hidden_size = hidden_size
|
319 |
-
self.hidden_size_per_partition = hidden_size
|
320 |
-
self.num_attention_heads = num_attention_heads
|
321 |
-
self.num_attention_heads_per_partition = num_attention_heads
|
322 |
-
self.position_encoding_2d = position_encoding_2d
|
323 |
-
self.rotary_emb = RotaryEmbedding(
|
324 |
-
self.hidden_size // (self.num_attention_heads * 2)
|
325 |
-
if position_encoding_2d
|
326 |
-
else self.hidden_size // self.num_attention_heads,
|
327 |
-
base=10000,
|
328 |
-
precision=torch.half,
|
329 |
-
learnable=False,
|
330 |
-
)
|
331 |
-
|
332 |
-
self.scale_mask_softmax = None
|
333 |
-
|
334 |
-
if hidden_size_per_attention_head is None:
|
335 |
-
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
336 |
-
else:
|
337 |
-
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
338 |
-
|
339 |
-
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
340 |
-
|
341 |
-
# Strided linear layer.
|
342 |
-
self.query_key_value = skip_init(
|
343 |
-
torch.nn.Linear,
|
344 |
-
hidden_size,
|
345 |
-
3 * self.inner_hidden_size,
|
346 |
-
bias=bias,
|
347 |
-
dtype=params_dtype,
|
348 |
-
)
|
349 |
-
|
350 |
-
self.dense = skip_init(
|
351 |
-
torch.nn.Linear,
|
352 |
-
self.inner_hidden_size,
|
353 |
-
hidden_size,
|
354 |
-
bias=bias,
|
355 |
-
dtype=params_dtype,
|
356 |
-
)
|
357 |
-
|
358 |
-
@staticmethod
|
359 |
-
def attention_mask_func(attention_scores, attention_mask):
|
360 |
-
attention_scores.masked_fill_(attention_mask, -10000.0)
|
361 |
-
return attention_scores
|
362 |
-
|
363 |
-
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
364 |
-
contiguous_split_chunks=False):
|
365 |
-
"""Split a tensor along its last dimension.
|
366 |
-
Arguments:
|
367 |
-
tensor: input tensor.
|
368 |
-
num_partitions: number of partitions to split the tensor
|
369 |
-
contiguous_split_chunks: If True, make each chunk contiguous
|
370 |
-
in memory.
|
371 |
-
"""
|
372 |
-
# Get the size and dimension.
|
373 |
-
last_dim = tensor.dim() - 1
|
374 |
-
last_dim_size = tensor.size()[last_dim] // num_partitions
|
375 |
-
# Split.
|
376 |
-
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
377 |
-
# Note: torch.split does not create contiguous tensors by default.
|
378 |
-
if contiguous_split_chunks:
|
379 |
-
return tuple(chunk.contiguous() for chunk in tensor_list)
|
380 |
-
|
381 |
-
return tensor_list
|
382 |
-
|
383 |
-
def forward(
|
384 |
-
self,
|
385 |
-
hidden_states: torch.Tensor,
|
386 |
-
position_ids,
|
387 |
-
attention_mask: torch.Tensor,
|
388 |
-
layer_id,
|
389 |
-
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
390 |
-
use_cache: bool = False,
|
391 |
-
output_attentions: bool = False,
|
392 |
-
):
|
393 |
-
"""
|
394 |
-
hidden_states: [seq_len, batch, hidden_size]
|
395 |
-
attention_mask: [(1, 1), seq_len, seq_len]
|
396 |
-
"""
|
397 |
-
|
398 |
-
# [seq_len, batch, 3 * hidden_size]
|
399 |
-
mixed_raw_layer = self.query_key_value(hidden_states)
|
400 |
-
|
401 |
-
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
402 |
-
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
403 |
-
self.num_attention_heads_per_partition,
|
404 |
-
3 * self.hidden_size_per_attention_head,
|
405 |
-
)
|
406 |
-
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
407 |
-
|
408 |
-
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
409 |
-
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
410 |
-
|
411 |
-
if self.position_encoding_2d:
|
412 |
-
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
413 |
-
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
414 |
-
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
415 |
-
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
416 |
-
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
417 |
-
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
418 |
-
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
419 |
-
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
420 |
-
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
421 |
-
else:
|
422 |
-
position_ids = position_ids.transpose(0, 1)
|
423 |
-
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
424 |
-
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
425 |
-
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
426 |
-
|
427 |
-
# [seq_len, batch, hidden_size]
|
428 |
-
context_layer, present, attention_probs = attention_fn(
|
429 |
-
self=self,
|
430 |
-
query_layer=query_layer,
|
431 |
-
key_layer=key_layer,
|
432 |
-
value_layer=value_layer,
|
433 |
-
attention_mask=attention_mask,
|
434 |
-
hidden_size_per_partition=self.hidden_size_per_partition,
|
435 |
-
layer_id=layer_id,
|
436 |
-
layer_past=layer_past,
|
437 |
-
use_cache=use_cache
|
438 |
-
)
|
439 |
-
|
440 |
-
output = self.dense(context_layer)
|
441 |
-
|
442 |
-
outputs = (output, present)
|
443 |
-
|
444 |
-
if output_attentions:
|
445 |
-
outputs += (attention_probs,)
|
446 |
-
|
447 |
-
return outputs # output, present, attention_probs
|
448 |
-
|
449 |
-
|
450 |
-
class GEGLU(torch.nn.Module):
|
451 |
-
def __init__(self):
|
452 |
-
super().__init__()
|
453 |
-
self.activation_fn = F.gelu
|
454 |
-
|
455 |
-
def forward(self, x):
|
456 |
-
# dim=-1 breaks in jit for pt<1.10
|
457 |
-
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
458 |
-
return x1 * self.activation_fn(x2)
|
459 |
-
|
460 |
-
|
461 |
-
class GLU(torch.nn.Module):
|
462 |
-
def __init__(self, hidden_size, inner_hidden_size=None,
|
463 |
-
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
|
464 |
-
super(GLU, self).__init__()
|
465 |
-
self.layer_id = layer_id
|
466 |
-
self.activation_func = activation_func
|
467 |
-
|
468 |
-
# Project to 4h.
|
469 |
-
self.hidden_size = hidden_size
|
470 |
-
if inner_hidden_size is None:
|
471 |
-
inner_hidden_size = 4 * hidden_size
|
472 |
-
self.inner_hidden_size = inner_hidden_size
|
473 |
-
self.dense_h_to_4h = skip_init(
|
474 |
-
torch.nn.Linear,
|
475 |
-
self.hidden_size,
|
476 |
-
self.inner_hidden_size,
|
477 |
-
bias=bias,
|
478 |
-
dtype=params_dtype,
|
479 |
-
)
|
480 |
-
# Project back to h.
|
481 |
-
self.dense_4h_to_h = skip_init(
|
482 |
-
torch.nn.Linear,
|
483 |
-
self.inner_hidden_size,
|
484 |
-
self.hidden_size,
|
485 |
-
bias=bias,
|
486 |
-
dtype=params_dtype,
|
487 |
-
)
|
488 |
-
|
489 |
-
def forward(self, hidden_states):
|
490 |
-
"""
|
491 |
-
hidden_states: [seq_len, batch, hidden_size]
|
492 |
-
"""
|
493 |
-
|
494 |
-
# [seq_len, batch, inner_hidden_size]
|
495 |
-
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
496 |
-
|
497 |
-
intermediate_parallel = self.activation_func(intermediate_parallel)
|
498 |
-
|
499 |
-
output = self.dense_4h_to_h(intermediate_parallel)
|
500 |
-
|
501 |
-
return output
|
502 |
-
|
503 |
-
|
504 |
-
class GLMBlock(torch.nn.Module):
|
505 |
-
def __init__(
|
506 |
-
self,
|
507 |
-
hidden_size,
|
508 |
-
num_attention_heads,
|
509 |
-
layernorm_epsilon,
|
510 |
-
layer_id,
|
511 |
-
inner_hidden_size=None,
|
512 |
-
hidden_size_per_attention_head=None,
|
513 |
-
layernorm=LayerNorm,
|
514 |
-
use_bias=True,
|
515 |
-
params_dtype=torch.float,
|
516 |
-
num_layers=28,
|
517 |
-
position_encoding_2d=True
|
518 |
-
):
|
519 |
-
super(GLMBlock, self).__init__()
|
520 |
-
# Set output layer initialization if not provided.
|
521 |
-
|
522 |
-
self.layer_id = layer_id
|
523 |
-
|
524 |
-
# Layernorm on the input data.
|
525 |
-
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
526 |
-
|
527 |
-
self.position_encoding_2d = position_encoding_2d
|
528 |
-
|
529 |
-
# Self attention.
|
530 |
-
self.attention = SelfAttention(
|
531 |
-
hidden_size,
|
532 |
-
num_attention_heads,
|
533 |
-
layer_id,
|
534 |
-
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
535 |
-
bias=use_bias,
|
536 |
-
params_dtype=params_dtype,
|
537 |
-
position_encoding_2d=self.position_encoding_2d
|
538 |
-
)
|
539 |
-
|
540 |
-
# Layernorm on the input data.
|
541 |
-
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
542 |
-
|
543 |
-
self.num_layers = num_layers
|
544 |
-
|
545 |
-
# GLU
|
546 |
-
self.mlp = GLU(
|
547 |
-
hidden_size,
|
548 |
-
inner_hidden_size=inner_hidden_size,
|
549 |
-
bias=use_bias,
|
550 |
-
layer_id=layer_id,
|
551 |
-
params_dtype=params_dtype,
|
552 |
-
)
|
553 |
-
|
554 |
-
def forward(
|
555 |
-
self,
|
556 |
-
hidden_states: torch.Tensor,
|
557 |
-
position_ids,
|
558 |
-
attention_mask: torch.Tensor,
|
559 |
-
layer_id,
|
560 |
-
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
561 |
-
use_cache: bool = False,
|
562 |
-
output_attentions: bool = False,
|
563 |
-
):
|
564 |
-
"""
|
565 |
-
hidden_states: [seq_len, batch, hidden_size]
|
566 |
-
attention_mask: [(1, 1), seq_len, seq_len]
|
567 |
-
"""
|
568 |
-
|
569 |
-
# Layer norm at the begining of the transformer layer.
|
570 |
-
# [seq_len, batch, hidden_size]
|
571 |
-
attention_input = self.input_layernorm(hidden_states)
|
572 |
-
|
573 |
-
# Self attention.
|
574 |
-
attention_outputs = self.attention(
|
575 |
-
attention_input,
|
576 |
-
position_ids,
|
577 |
-
attention_mask=attention_mask,
|
578 |
-
layer_id=layer_id,
|
579 |
-
layer_past=layer_past,
|
580 |
-
use_cache=use_cache,
|
581 |
-
output_attentions=output_attentions
|
582 |
-
)
|
583 |
-
|
584 |
-
attention_output = attention_outputs[0]
|
585 |
-
|
586 |
-
outputs = attention_outputs[1:]
|
587 |
-
|
588 |
-
# Residual connection.
|
589 |
-
alpha = (2 * self.num_layers) ** 0.5
|
590 |
-
hidden_states = attention_input * alpha + attention_output
|
591 |
-
|
592 |
-
mlp_input = self.post_attention_layernorm(hidden_states)
|
593 |
-
|
594 |
-
# MLP.
|
595 |
-
mlp_output = self.mlp(mlp_input)
|
596 |
-
|
597 |
-
# Second residual connection.
|
598 |
-
output = mlp_input * alpha + mlp_output
|
599 |
-
|
600 |
-
if use_cache:
|
601 |
-
outputs = (output,) + outputs
|
602 |
-
else:
|
603 |
-
outputs = (output,) + outputs[1:]
|
604 |
-
|
605 |
-
return outputs # hidden_states, present, attentions
|
606 |
-
|
607 |
-
|
608 |
-
class ChatGLMPreTrainedModel(PreTrainedModel):
|
609 |
-
"""
|
610 |
-
An abstract class to handle weights initialization and
|
611 |
-
a simple interface for downloading and loading pretrained models.
|
612 |
-
"""
|
613 |
-
|
614 |
-
is_parallelizable = False
|
615 |
-
supports_gradient_checkpointing = False
|
616 |
-
config_class = ChatGLMConfig
|
617 |
-
base_model_prefix = "transformer"
|
618 |
-
_no_split_modules = ["GLM6BBlock"]
|
619 |
-
|
620 |
-
def __init__(self, *inputs, **kwargs):
|
621 |
-
super().__init__(*inputs, **kwargs)
|
622 |
-
|
623 |
-
def _init_weights(self, module: nn.Module):
|
624 |
-
"""Initialize the weights."""
|
625 |
-
return
|
626 |
-
|
627 |
-
|
628 |
-
CHATGLM_6B_START_DOCSTRING = r"""
|
629 |
-
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
630 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
631 |
-
usage and behavior.
|
632 |
-
|
633 |
-
Parameters:
|
634 |
-
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
635 |
-
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
636 |
-
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
637 |
-
"""
|
638 |
-
|
639 |
-
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
640 |
-
Args:
|
641 |
-
input_ids (`torch.LongTensor` of shape `({0})`):
|
642 |
-
Indices of input sequence tokens in the vocabulary.
|
643 |
-
|
644 |
-
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
645 |
-
See [`PreTrainedTokenizer.encode`] and
|
646 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
647 |
-
|
648 |
-
[What are input IDs?](../glossary#input-ids)
|
649 |
-
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
650 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
651 |
-
|
652 |
-
- 1 for tokens that are **not masked**,
|
653 |
-
- 0 for tokens that are **masked**.
|
654 |
-
|
655 |
-
[What are attention masks?](../glossary#attention-mask)
|
656 |
-
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
657 |
-
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
658 |
-
|
659 |
-
- 0 corresponds to a *sentence A* token,
|
660 |
-
- 1 corresponds to a *sentence B* token.
|
661 |
-
|
662 |
-
[What are token type IDs?](../glossary#token-type-ids)
|
663 |
-
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
664 |
-
Indices of positions of each input sequence tokens in the position embeddings.
|
665 |
-
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
666 |
-
|
667 |
-
[What are position IDs?](../glossary#position-ids)
|
668 |
-
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
669 |
-
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
670 |
-
|
671 |
-
- 1 indicates the head is **not masked**,
|
672 |
-
- 0 indicates the head is **masked**.
|
673 |
-
|
674 |
-
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
675 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
676 |
-
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
677 |
-
than the model's internal embedding lookup matrix.
|
678 |
-
output_attentions (`bool`, *optional*):
|
679 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
680 |
-
tensors for more detail.
|
681 |
-
output_hidden_states (`bool`, *optional*):
|
682 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
683 |
-
more detail.
|
684 |
-
return_dict (`bool`, *optional*):
|
685 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
686 |
-
"""
|
687 |
-
|
688 |
-
|
689 |
-
@add_start_docstrings(
|
690 |
-
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
691 |
-
CHATGLM_6B_START_DOCSTRING,
|
692 |
-
)
|
693 |
-
class ChatGLMModel(ChatGLMPreTrainedModel):
|
694 |
-
"""
|
695 |
-
|
696 |
-
The model can behave as an encoder (with only self-attention) as well
|
697 |
-
as a decoder, in which case a layer of cross-attention is added between
|
698 |
-
the self-attention layers, following the architecture described in [Attention is
|
699 |
-
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
700 |
-
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
701 |
-
|
702 |
-
To behave as an decoder the model needs to be initialized with the
|
703 |
-
`is_decoder` argument of the configuration set to `True`.
|
704 |
-
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
705 |
-
argument and `add_cross_attention` set to `True`; an
|
706 |
-
`encoder_hidden_states` is then expected as an input to the forward pass.
|
707 |
-
"""
|
708 |
-
|
709 |
-
def __init__(self, config: ChatGLMConfig):
|
710 |
-
super().__init__(config)
|
711 |
-
|
712 |
-
# recording parameters
|
713 |
-
self.max_sequence_length = config.max_sequence_length
|
714 |
-
self.hidden_size = config.hidden_size
|
715 |
-
self.params_dtype = torch.half
|
716 |
-
self.num_attention_heads = config.num_attention_heads
|
717 |
-
self.vocab_size = config.vocab_size
|
718 |
-
self.num_layers = config.num_layers
|
719 |
-
self.layernorm_epsilon = config.layernorm_epsilon
|
720 |
-
self.inner_hidden_size = config.inner_hidden_size
|
721 |
-
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
722 |
-
self.position_encoding_2d = config.position_encoding_2d
|
723 |
-
|
724 |
-
self.word_embeddings = skip_init(
|
725 |
-
torch.nn.Embedding,
|
726 |
-
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
727 |
-
dtype=self.params_dtype
|
728 |
-
)
|
729 |
-
|
730 |
-
def get_layer(layer_id):
|
731 |
-
return GLMBlock(
|
732 |
-
self.hidden_size,
|
733 |
-
self.num_attention_heads,
|
734 |
-
self.layernorm_epsilon,
|
735 |
-
layer_id,
|
736 |
-
inner_hidden_size=self.inner_hidden_size,
|
737 |
-
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
738 |
-
layernorm=LayerNorm,
|
739 |
-
use_bias=True,
|
740 |
-
params_dtype=self.params_dtype,
|
741 |
-
position_encoding_2d=self.position_encoding_2d,
|
742 |
-
)
|
743 |
-
|
744 |
-
self.layers = torch.nn.ModuleList(
|
745 |
-
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
746 |
-
)
|
747 |
-
|
748 |
-
# Final layer norm before output.
|
749 |
-
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
750 |
-
|
751 |
-
def get_input_embeddings(self):
|
752 |
-
return self.word_embeddings
|
753 |
-
|
754 |
-
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
755 |
-
self.word_embeddings = new_embeddings
|
756 |
-
|
757 |
-
def get_masks(self, seq, device):
|
758 |
-
context_length = seq.index(self.config.bos_token_id) + 1
|
759 |
-
|
760 |
-
attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
|
761 |
-
attention_mask.tril_()
|
762 |
-
attention_mask[..., :context_length - 1] = 1
|
763 |
-
attention_mask.unsqueeze_(1)
|
764 |
-
attention_mask = (attention_mask < 0.5).bool()
|
765 |
-
|
766 |
-
return attention_mask
|
767 |
-
|
768 |
-
def get_position_ids(self, seq, mask_position, device, gmask=False):
|
769 |
-
context_length = seq.index(self.config.bos_token_id) + 1
|
770 |
-
if self.position_encoding_2d:
|
771 |
-
seq_length = seq.index(self.config.bos_token_id)
|
772 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
773 |
-
if not gmask:
|
774 |
-
position_ids[seq_length:] = mask_position
|
775 |
-
block_position_ids = torch.cat((
|
776 |
-
torch.zeros(seq_length, dtype=torch.long, device=device),
|
777 |
-
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
778 |
-
))
|
779 |
-
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
780 |
-
else:
|
781 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
782 |
-
if not gmask:
|
783 |
-
position_ids[context_length - 1:] = mask_position
|
784 |
-
|
785 |
-
position_ids = position_ids.unsqueeze(0)
|
786 |
-
|
787 |
-
return position_ids
|
788 |
-
|
789 |
-
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
790 |
-
@add_code_sample_docstrings(
|
791 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
792 |
-
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
793 |
-
config_class=_CONFIG_FOR_DOC,
|
794 |
-
)
|
795 |
-
def forward(
|
796 |
-
self,
|
797 |
-
input_ids: Optional[torch.LongTensor] = None,
|
798 |
-
position_ids: Optional[torch.LongTensor] = None,
|
799 |
-
attention_mask: Optional[torch.Tensor] = None,
|
800 |
-
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
801 |
-
inputs_embeds: Optional[torch.LongTensor] = None,
|
802 |
-
use_cache: Optional[bool] = None,
|
803 |
-
output_attentions: Optional[bool] = None,
|
804 |
-
output_hidden_states: Optional[bool] = None,
|
805 |
-
return_dict: Optional[bool] = None,
|
806 |
-
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
807 |
-
|
808 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
809 |
-
output_hidden_states = (
|
810 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
811 |
-
)
|
812 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
813 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
814 |
-
|
815 |
-
if input_ids is not None and inputs_embeds is not None:
|
816 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
817 |
-
elif input_ids is not None:
|
818 |
-
batch_size, seq_length = input_ids.shape[:2]
|
819 |
-
elif inputs_embeds is not None:
|
820 |
-
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
821 |
-
else:
|
822 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
823 |
-
|
824 |
-
if past_key_values is None:
|
825 |
-
past_key_values = tuple([None] * len(self.layers))
|
826 |
-
seq = input_ids[0].tolist()
|
827 |
-
|
828 |
-
if attention_mask is None:
|
829 |
-
attention_mask = self.get_masks(
|
830 |
-
seq=seq,
|
831 |
-
device=input_ids.device
|
832 |
-
)
|
833 |
-
|
834 |
-
if position_ids is None:
|
835 |
-
MASK, gMASK = 150000, 150001
|
836 |
-
mask_token = MASK if MASK in input_ids else gMASK
|
837 |
-
use_gmask = False if MASK in input_ids else gMASK
|
838 |
-
|
839 |
-
mask_position = seq.index(mask_token)
|
840 |
-
position_ids = self.get_position_ids(
|
841 |
-
seq=seq,
|
842 |
-
mask_position=mask_position,
|
843 |
-
device=input_ids.device,
|
844 |
-
gmask=use_gmask
|
845 |
-
)
|
846 |
-
|
847 |
-
if inputs_embeds is None:
|
848 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
849 |
-
|
850 |
-
# [seq_len, batch, hidden_size]
|
851 |
-
hidden_states = inputs_embeds.transpose(0, 1)
|
852 |
-
|
853 |
-
presents = () if use_cache else None
|
854 |
-
all_self_attentions = () if output_attentions else None
|
855 |
-
all_hidden_states = () if output_hidden_states else None
|
856 |
-
|
857 |
-
seq_length_with_past = seq_length
|
858 |
-
past_key_values_length = 0
|
859 |
-
if past_key_values[0] is not None:
|
860 |
-
past_key_values_length = past_key_values[0][0].shape[0]
|
861 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
862 |
-
if attention_mask is None:
|
863 |
-
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
864 |
-
|
865 |
-
else:
|
866 |
-
attention_mask = attention_mask.to(input_ids.device)
|
867 |
-
|
868 |
-
for i, layer in enumerate(self.layers):
|
869 |
-
|
870 |
-
if output_hidden_states:
|
871 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
872 |
-
|
873 |
-
layer_ret = layer(
|
874 |
-
hidden_states,
|
875 |
-
position_ids=position_ids,
|
876 |
-
attention_mask=attention_mask,
|
877 |
-
layer_id=torch.tensor(i),
|
878 |
-
layer_past=past_key_values[i],
|
879 |
-
use_cache=use_cache,
|
880 |
-
output_attentions=output_attentions
|
881 |
-
)
|
882 |
-
|
883 |
-
hidden_states = layer_ret[0]
|
884 |
-
|
885 |
-
if use_cache:
|
886 |
-
presents = presents + (layer_ret[1],)
|
887 |
-
|
888 |
-
if output_attentions:
|
889 |
-
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
890 |
-
|
891 |
-
# Final layer norm.
|
892 |
-
hidden_states = self.final_layernorm(hidden_states)
|
893 |
-
|
894 |
-
if output_hidden_states:
|
895 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
896 |
-
|
897 |
-
if not return_dict:
|
898 |
-
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
899 |
-
|
900 |
-
return BaseModelOutputWithPast(
|
901 |
-
last_hidden_state=hidden_states,
|
902 |
-
past_key_values=presents,
|
903 |
-
hidden_states=all_hidden_states,
|
904 |
-
attentions=all_self_attentions,
|
905 |
-
)
|
906 |
-
|
907 |
-
|
908 |
-
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
909 |
-
def __init__(self, config):
|
910 |
-
super().__init__(config)
|
911 |
-
|
912 |
-
# self.hidden_size = config.hidden_size
|
913 |
-
# self.params_dtype = torch.half
|
914 |
-
# self.vocab_size = config.vocab_size
|
915 |
-
self.max_sequence_length = config.max_sequence_length
|
916 |
-
|
917 |
-
self.position_encoding_2d = config.position_encoding_2d
|
918 |
-
|
919 |
-
self.transformer = ChatGLMModel(config)
|
920 |
-
|
921 |
-
self.lm_head = skip_init(
|
922 |
-
nn.Linear,
|
923 |
-
config.hidden_size,
|
924 |
-
config.vocab_size,
|
925 |
-
bias=False,
|
926 |
-
dtype=torch.half
|
927 |
-
)
|
928 |
-
|
929 |
-
def get_output_embeddings(self):
|
930 |
-
return self.lm_head
|
931 |
-
|
932 |
-
def set_output_embeddings(self, new_embeddings):
|
933 |
-
self.lm_head = new_embeddings
|
934 |
-
|
935 |
-
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
|
936 |
-
attention_mask = torch.ones((1, context_length, context_length), device=device)
|
937 |
-
attention_mask.tril_()
|
938 |
-
attention_mask[..., :context_length - 1] = 1
|
939 |
-
attention_mask.unsqueeze_(1)
|
940 |
-
attention_mask = (attention_mask < 0.5).bool()
|
941 |
-
|
942 |
-
if self.position_encoding_2d:
|
943 |
-
seq_length = seq.index(self.config.bos_token_id)
|
944 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
945 |
-
if not gmask:
|
946 |
-
position_ids[seq_length:] = mask_position
|
947 |
-
block_position_ids = torch.cat((
|
948 |
-
torch.zeros(seq_length, dtype=torch.long, device=device),
|
949 |
-
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
950 |
-
))
|
951 |
-
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
952 |
-
else:
|
953 |
-
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
954 |
-
if not gmask:
|
955 |
-
position_ids[context_length - 1:] = mask_position
|
956 |
-
|
957 |
-
position_ids = position_ids.unsqueeze(0)
|
958 |
-
|
959 |
-
return attention_mask, position_ids
|
960 |
-
|
961 |
-
def prepare_inputs_for_generation(
|
962 |
-
self,
|
963 |
-
input_ids: torch.LongTensor,
|
964 |
-
past: Optional[torch.Tensor] = None,
|
965 |
-
past_key_values: Optional[torch.Tensor] = None,
|
966 |
-
attention_mask: Optional[torch.Tensor] = None,
|
967 |
-
**kwargs
|
968 |
-
) -> dict:
|
969 |
-
|
970 |
-
MASK, gMASK = 150000, 150001
|
971 |
-
mask_token = MASK if MASK in input_ids else gMASK
|
972 |
-
use_gmask = False if MASK in input_ids else gMASK
|
973 |
-
seq = input_ids[0].tolist()
|
974 |
-
mask_position = seq.index(mask_token)
|
975 |
-
|
976 |
-
if mask_token not in seq:
|
977 |
-
raise ValueError("You have to add either [MASK] or [gMASK] in your input")
|
978 |
-
|
979 |
-
# only last token for input_ids if past is not None
|
980 |
-
if past is not None or past_key_values is not None:
|
981 |
-
context_length = seq.index(self.config.bos_token_id)
|
982 |
-
last_token = input_ids[:, -1].unsqueeze(-1)
|
983 |
-
if self.position_encoding_2d:
|
984 |
-
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
|
985 |
-
device=input_ids.device)
|
986 |
-
else:
|
987 |
-
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)
|
988 |
-
|
989 |
-
if past is None:
|
990 |
-
past = past_key_values
|
991 |
-
return {
|
992 |
-
"input_ids": last_token,
|
993 |
-
"past_key_values": past,
|
994 |
-
"position_ids": position_ids,
|
995 |
-
}
|
996 |
-
else:
|
997 |
-
attention_mask, position_ids = self.get_masks_and_position_ids(
|
998 |
-
seq=seq,
|
999 |
-
mask_position=mask_position,
|
1000 |
-
context_length=len(seq),
|
1001 |
-
device=input_ids.device,
|
1002 |
-
gmask=use_gmask
|
1003 |
-
)
|
1004 |
-
|
1005 |
-
return {
|
1006 |
-
"input_ids": input_ids,
|
1007 |
-
"past_key_values": past,
|
1008 |
-
"position_ids": position_ids,
|
1009 |
-
"attention_mask": attention_mask
|
1010 |
-
}
|
1011 |
-
|
1012 |
-
def forward(
|
1013 |
-
self,
|
1014 |
-
input_ids: Optional[torch.Tensor] = None,
|
1015 |
-
position_ids: Optional[torch.Tensor] = None,
|
1016 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1017 |
-
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1018 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
1019 |
-
labels: Optional[torch.Tensor] = None,
|
1020 |
-
use_cache: Optional[bool] = None,
|
1021 |
-
output_attentions: Optional[bool] = None,
|
1022 |
-
output_hidden_states: Optional[bool] = None,
|
1023 |
-
return_dict: Optional[bool] = None,
|
1024 |
-
):
|
1025 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1026 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1027 |
-
|
1028 |
-
transformer_outputs = self.transformer(
|
1029 |
-
input_ids=input_ids,
|
1030 |
-
position_ids=position_ids,
|
1031 |
-
attention_mask=attention_mask,
|
1032 |
-
past_key_values=past_key_values,
|
1033 |
-
inputs_embeds=inputs_embeds,
|
1034 |
-
use_cache=use_cache,
|
1035 |
-
output_attentions=output_attentions,
|
1036 |
-
output_hidden_states=output_hidden_states,
|
1037 |
-
return_dict=return_dict,
|
1038 |
-
)
|
1039 |
-
|
1040 |
-
hidden_states = transformer_outputs[0]
|
1041 |
-
|
1042 |
-
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
1043 |
-
|
1044 |
-
loss = None
|
1045 |
-
if labels is not None:
|
1046 |
-
lm_logits = lm_logits.to(torch.float32)
|
1047 |
-
|
1048 |
-
# Shift so that tokens < n predict n
|
1049 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1050 |
-
shift_labels = labels[..., 1:].contiguous()
|
1051 |
-
# Flatten the tokens
|
1052 |
-
loss_fct = CrossEntropyLoss()
|
1053 |
-
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1054 |
-
|
1055 |
-
lm_logits = lm_logits.to(hidden_states.dtype)
|
1056 |
-
loss = loss.to(hidden_states.dtype)
|
1057 |
-
|
1058 |
-
if not return_dict:
|
1059 |
-
output = (lm_logits,) + transformer_outputs[1:]
|
1060 |
-
return ((loss,) + output) if loss is not None else output
|
1061 |
-
|
1062 |
-
return CausalLMOutputWithPast(
|
1063 |
-
loss=loss,
|
1064 |
-
logits=lm_logits,
|
1065 |
-
past_key_values=transformer_outputs.past_key_values,
|
1066 |
-
hidden_states=transformer_outputs.hidden_states,
|
1067 |
-
attentions=transformer_outputs.attentions,
|
1068 |
-
)
|
1069 |
-
|
1070 |
-
@staticmethod
|
1071 |
-
def _reorder_cache(
|
1072 |
-
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1073 |
-
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1074 |
-
"""
|
1075 |
-
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1076 |
-
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1077 |
-
beam_idx at every generation step.
|
1078 |
-
|
1079 |
-
Output shares the same memory storage as `past`.
|
1080 |
-
"""
|
1081 |
-
return tuple(
|
1082 |
-
(
|
1083 |
-
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
1084 |
-
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1085 |
-
)
|
1086 |
-
for layer_past in past
|
1087 |
-
)
|
1088 |
-
|
1089 |
-
def process_response(self, response):
|
1090 |
-
response = response.strip()
|
1091 |
-
response = response.replace("[[训练时间]]", "2023年")
|
1092 |
-
punkts = [
|
1093 |
-
[",", ","],
|
1094 |
-
["!", "!"],
|
1095 |
-
[":", ":"],
|
1096 |
-
[";", ";"],
|
1097 |
-
["\?", "?"],
|
1098 |
-
]
|
1099 |
-
for item in punkts:
|
1100 |
-
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
|
1101 |
-
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
|
1102 |
-
return response
|
1103 |
-
|
1104 |
-
@torch.no_grad()
|
1105 |
-
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
1106 |
-
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1107 |
-
if history is None:
|
1108 |
-
history = []
|
1109 |
-
if logits_processor is None:
|
1110 |
-
logits_processor = LogitsProcessorList()
|
1111 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
1112 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1113 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1114 |
-
if not history:
|
1115 |
-
prompt = query
|
1116 |
-
else:
|
1117 |
-
prompt = ""
|
1118 |
-
for i, (old_query, response) in enumerate(history):
|
1119 |
-
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1120 |
-
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1121 |
-
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
1122 |
-
input_ids = input_ids.to(self.device)
|
1123 |
-
outputs = self.generate(**input_ids, **gen_kwargs)
|
1124 |
-
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
|
1125 |
-
response = tokenizer.decode(outputs)
|
1126 |
-
response = self.process_response(response)
|
1127 |
-
history = history + [(query, response)]
|
1128 |
-
return response, history
|
1129 |
-
|
1130 |
-
@torch.no_grad()
|
1131 |
-
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
1132 |
-
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1133 |
-
if history is None:
|
1134 |
-
history = []
|
1135 |
-
if logits_processor is None:
|
1136 |
-
logits_processor = LogitsProcessorList()
|
1137 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
1138 |
-
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1139 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1140 |
-
if not history:
|
1141 |
-
prompt = query
|
1142 |
-
else:
|
1143 |
-
prompt = ""
|
1144 |
-
for i, (old_query, response) in enumerate(history):
|
1145 |
-
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1146 |
-
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1147 |
-
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
1148 |
-
input_ids = input_ids.to(self.device)
|
1149 |
-
for outputs in self.stream_generate(**input_ids, **gen_kwargs):
|
1150 |
-
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
|
1151 |
-
response = tokenizer.decode(outputs)
|
1152 |
-
response = self.process_response(response)
|
1153 |
-
new_history = history + [(query, response)]
|
1154 |
-
yield response, new_history
|
1155 |
-
|
1156 |
-
@torch.no_grad()
|
1157 |
-
def stream_generate(
|
1158 |
-
self,
|
1159 |
-
input_ids,
|
1160 |
-
generation_config: Optional[GenerationConfig] = None,
|
1161 |
-
logits_processor: Optional[LogitsProcessorList] = None,
|
1162 |
-
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1163 |
-
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1164 |
-
**kwargs,
|
1165 |
-
):
|
1166 |
-
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1167 |
-
|
1168 |
-
if generation_config is None:
|
1169 |
-
generation_config = self.generation_config
|
1170 |
-
generation_config = copy.deepcopy(generation_config)
|
1171 |
-
model_kwargs = generation_config.update(**kwargs)
|
1172 |
-
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1173 |
-
|
1174 |
-
if isinstance(eos_token_id, int):
|
1175 |
-
eos_token_id = [eos_token_id]
|
1176 |
-
|
1177 |
-
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1178 |
-
if has_default_max_length and generation_config.max_new_tokens is None:
|
1179 |
-
warnings.warn(
|
1180 |
-
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1181 |
-
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1182 |
-
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1183 |
-
UserWarning,
|
1184 |
-
)
|
1185 |
-
elif generation_config.max_new_tokens is not None:
|
1186 |
-
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1187 |
-
if not has_default_max_length:
|
1188 |
-
logger.warn(
|
1189 |
-
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1190 |
-
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1191 |
-
"Please refer to the documentation for more information. "
|
1192 |
-
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1193 |
-
UserWarning,
|
1194 |
-
)
|
1195 |
-
|
1196 |
-
if input_ids_seq_length >= generation_config.max_length:
|
1197 |
-
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1198 |
-
logger.warning(
|
1199 |
-
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1200 |
-
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1201 |
-
" increasing `max_new_tokens`."
|
1202 |
-
)
|
1203 |
-
|
1204 |
-
# 2. Set generation parameters if not already defined
|
1205 |
-
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1206 |
-
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1207 |
-
|
1208 |
-
logits_processor = self._get_logits_processor(
|
1209 |
-
generation_config=generation_config,
|
1210 |
-
input_ids_seq_length=input_ids_seq_length,
|
1211 |
-
encoder_input_ids=input_ids,
|
1212 |
-
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1213 |
-
logits_processor=logits_processor,
|
1214 |
-
)
|
1215 |
-
|
1216 |
-
stopping_criteria = self._get_stopping_criteria(
|
1217 |
-
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1218 |
-
)
|
1219 |
-
logits_warper = self._get_logits_warper(generation_config)
|
1220 |
-
|
1221 |
-
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1222 |
-
scores = None
|
1223 |
-
while True:
|
1224 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1225 |
-
# forward pass to get next token
|
1226 |
-
outputs = self(
|
1227 |
-
**model_inputs,
|
1228 |
-
return_dict=True,
|
1229 |
-
output_attentions=False,
|
1230 |
-
output_hidden_states=False,
|
1231 |
-
)
|
1232 |
-
|
1233 |
-
next_token_logits = outputs.logits[:, -1, :]
|
1234 |
-
|
1235 |
-
# pre-process distribution
|
1236 |
-
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1237 |
-
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1238 |
-
|
1239 |
-
# sample
|
1240 |
-
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1241 |
-
if generation_config.do_sample:
|
1242 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1243 |
-
else:
|
1244 |
-
next_tokens = torch.argmax(probs, dim=-1)
|
1245 |
-
|
1246 |
-
# update generated ids, model inputs, and length for next step
|
1247 |
-
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1248 |
-
model_kwargs = self._update_model_kwargs_for_generation(
|
1249 |
-
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1250 |
-
)
|
1251 |
-
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1252 |
-
|
1253 |
-
# stop when each sentence is finished, or if we exceed the maximum length
|
1254 |
-
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1255 |
-
break
|
1256 |
-
yield input_ids
|
1257 |
-
|
1258 |
-
def quantize(self, bits: int):
|
1259 |
-
from .quantization import quantize
|
1260 |
-
self.transformer = quantize(self.transformer, bits)
|
1261 |
-
return self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|