File size: 2,202 Bytes
23a2cc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
language:
- lg
license: apache-2.0
base_model: openai/whisper-small
tags:
- whisper-event
- generated_from_trainer
datasets:
- tericlabs
metrics:
- wer
model-index:
- name: Whisper Small ganda
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Yogera data
type: tericlabs
config: lg
split: test
args: lg
metrics:
- name: Wer
type: wer
value: 54.276315789473685
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small ganda
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Yogera data dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4937
- Wer: 54.2763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.9882 | 26.0 | 500 | 1.4647 | 54.9342 |
| 0.0026 | 52.0 | 1000 | 1.3967 | 60.8553 |
| 0.0002 | 78.0 | 1500 | 1.4295 | 57.8947 |
| 0.0001 | 105.0 | 2000 | 1.4494 | 58.2237 |
| 0.0001 | 131.0 | 2500 | 1.4713 | 53.9474 |
| 0.0001 | 157.0 | 3000 | 1.4835 | 54.2763 |
| 0.0001 | 184.0 | 3500 | 1.4908 | 54.2763 |
| 0.0001 | 210.0 | 4000 | 1.4937 | 54.2763 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|