File size: 4,087 Bytes
bee738c 81a5753 bee738c 81a5753 bee738c 81a5753 bee738c 81a5753 bee738c 81a5753 bee738c 81a5753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
base_model: unsloth/Mistral-Nemo-Base-2407
library_name: peft
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: adventure-nemo-ws
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# python -m axolotl.cli.preprocess adventure-nemo.yml
# accelerate launch -m axolotl.cli.train adventure-nemo.yml
# python -m axolotl.cli.merge_lora adventure-nemo.yml
base_model: unsloth/Mistral-Nemo-Base-2407
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
sequence_len: 8192 # 99% vram
bf16: auto
fp16:
tf32: false
flash_attention: true
special_tokens:
# Data
dataset_prepared_path: last_run_prepared
datasets:
- path: ColumbidAI/adventure-8k
type: completion
warmup_steps: 10
shuffle_merged_datasets: true
save_safetensors: true
saves_per_epoch: 4
save_total_limit: 2
# WandB
wandb_project: Nemo-A
wandb_entity:
# Iterations
num_epochs: 1
# Output
output_dir: ./adventure-command-r-workspace
hub_model_id: ToastyPigeon/adventure-nemo-ws
hub_strategy: "all_checkpoints"
# Sampling
sample_packing: true
pad_to_sequence_len: true
# Batching
gradient_accumulation_steps: 1
micro_batch_size: 4
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
use_reentrant: true
#unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# Evaluation
val_set_size: 0.005
evals_per_epoch: 5
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
eval_batch_size: 1
# LoRA
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 32
lora_dropout: 0.125
lora_target_linear:
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00025
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
min_lr: 0.000025
weight_decay: 0.01
max_grad_norm: 20.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3.json # previously blank
fsdp:
fsdp_config:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
```
</details><br>
# adventure-nemo-ws
This model is a fine-tuned version of [unsloth/Mistral-Nemo-Base-2407](https://huggingface.co/unsloth/Mistral-Nemo-Base-2407) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9422 | 0.0011 | 1 | 2.3948 |
| 1.8427 | 0.2011 | 189 | 2.2440 |
| 1.6786 | 0.4021 | 378 | 2.2143 |
| 1.9847 | 0.6032 | 567 | 2.1799 |
| 1.8358 | 0.8043 | 756 | 2.1587 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |