Tijmen2 commited on
Commit
f8a13a3
1 Parent(s): b6e2e2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -57,10 +57,10 @@ thanks goes out to Yuan-Seng Ting for providing these resources.
57
 
58
  **Assistant:**
59
  > The Integrated Sachs-Wolfe (ISW) effect is a phenomenon in modern cosmology that describes the gravitational interaction between cosmic microwave background (CMB) photons and large-scale structures in the universe. It occurs when CMB photons pass through regions of space where the gravitational potential has changed due to the expansion of the universe or the presence of matter overdensities.
60
-
61
- When a photon moves into an area with a higher gravitational potential, it gains energy as it falls into the potential well. As the photon climbs out of this well on the other side, it loses energy. If the change in the gravitational potential is gradual over time, the photon's energy gain and loss will be integrated, leading to a net temperature shift in the CMB radiation. This effect can either cause a blueshift (increased energy) if the gravitational potential is decreasing, or a redshift (decreased energy) if the gravitational potential is increasing.
62
-
63
- The ISW effect is particularly important for understanding the evolution of the universe and the role of dark energy. The detection of the ISW effect has provided evidence for the existence of dark energy and has helped constrain its properties. By analyzing the CMB temperature fluctuations and cross-correlating them with tracers of large-scale structure such as galaxy surveys, researchers can study the ISW effect and learn more about the dynamics of the universe.
64
 
65
  **User:**
66
  > What is Digital Active Nulling?
 
57
 
58
  **Assistant:**
59
  > The Integrated Sachs-Wolfe (ISW) effect is a phenomenon in modern cosmology that describes the gravitational interaction between cosmic microwave background (CMB) photons and large-scale structures in the universe. It occurs when CMB photons pass through regions of space where the gravitational potential has changed due to the expansion of the universe or the presence of matter overdensities.
60
+ >
61
+ > When a photon moves into an area with a higher gravitational potential, it gains energy as it falls into the potential well. As the photon climbs out of this well on the other side, it loses energy. If the change in the gravitational potential is gradual over time, the photon's energy gain and loss will be integrated, leading to a net temperature shift in the CMB radiation. This effect can either cause a blueshift (increased energy) if the gravitational potential is decreasing, or a redshift (decreased energy) if the gravitational potential is increasing.
62
+ >
63
+ > The ISW effect is particularly important for understanding the evolution of the universe and the role of dark energy. The detection of the ISW effect has provided evidence for the existence of dark energy and has helped constrain its properties. By analyzing the CMB temperature fluctuations and cross-correlating them with tracers of large-scale structure such as galaxy surveys, researchers can study the ISW effect and learn more about the dynamics of the universe.
64
 
65
  **User:**
66
  > What is Digital Active Nulling?