|
--- |
|
base_model: allenai/scibert_scivocab_cased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SOMD-scibert-stage2-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SOMD-scibert-stage2-v1 |
|
|
|
This model is a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0115 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 202 | 0.4607 | |
|
| No log | 1.99 | 404 | 0.2408 | |
|
| 0.5891 | 2.99 | 606 | 0.1086 | |
|
| 0.5891 | 3.98 | 808 | 0.0879 | |
|
| 0.1352 | 4.98 | 1010 | 0.0505 | |
|
| 0.1352 | 5.97 | 1212 | 0.0286 | |
|
| 0.1352 | 6.97 | 1414 | 0.0262 | |
|
| 0.0541 | 7.96 | 1616 | 0.0231 | |
|
| 0.0541 | 8.96 | 1818 | 0.0224 | |
|
| 0.0395 | 9.95 | 2020 | 0.0217 | |
|
| 0.0395 | 10.95 | 2222 | 0.0191 | |
|
| 0.0395 | 11.94 | 2424 | 0.0156 | |
|
| 0.0303 | 12.94 | 2626 | 0.0164 | |
|
| 0.0303 | 13.93 | 2828 | 0.0146 | |
|
| 0.0226 | 14.93 | 3030 | 0.0124 | |
|
| 0.0226 | 15.92 | 3232 | 0.0127 | |
|
| 0.0226 | 16.92 | 3434 | 0.0115 | |
|
| 0.0176 | 17.91 | 3636 | 0.0123 | |
|
| 0.0176 | 18.91 | 3838 | 0.0115 | |
|
| 0.0146 | 19.9 | 4040 | 0.0115 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|