Threatthriver commited on
Commit
f1f3d69
1 Parent(s): c2da8ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -3
README.md CHANGED
@@ -1,3 +1,42 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # threatthriver/Gemma-7B-LoRA-Fine-Tuned
6
+
7
+ ## Description
8
+
9
+ This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset of [**briefly describe your dataset**].
10
+
11
+ **Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters.
12
+
13
+ ## Model Fine-tuning Details
14
+
15
+ - **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en)
16
+ - **Fine-tuning method:** LoRA ([https://arxiv.org/abs/2106.09685](https://arxiv.org/abs/2106.09685))
17
+ - **LoRA rank:** 8
18
+ - **Dataset:** [**Briefly describe your dataset and provide a link if possible**]
19
+ - **Training framework:** KerasNLP
20
+
21
+ ## How to Use
22
+
23
+ This model release is not directly compatible with the `transformers` library's standard loading methods. You will need to:
24
+
25
+ 1. **Load the Base Gemma Model:** Use KerasNLP to load the `google/gemma2_9b_en` base model.
26
+ 2. **Enable LoRA:** Use KerasNLP's LoRA functionality to enable adapters on the appropriate layers of the Gemma model.
27
+ 3. **Load Adapter Weights:** Load the `adapter_model.bin` and other relevant files from this repository to apply the fine-tuned adapter weights to the base Gemma model.
28
+ 4. **Integration:** Integrate this custom loading process into your Hugging Face Transformers-based code.
29
+
30
+ **Example Code Structure (Conceptual):**
31
+
32
+ ```python
33
+ import keras_nlp
34
+ from transformers import GemmaTokenizerFast # Or appropriate tokenizer
35
+
36
+ # ... Load base Gemma model using KerasNLP ...
37
+
38
+ # ... Enable LoRA adapters on target layers ...
39
+
40
+ # ... Load adapter weights from this repository ...
41
+
42
+ # ... Use tokenizer, model for generation or other tasks ...