Threatthriver
commited on
Commit
•
f1f3d69
1
Parent(s):
c2da8ef
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,42 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# threatthriver/Gemma-7B-LoRA-Fine-Tuned
|
6 |
+
|
7 |
+
## Description
|
8 |
+
|
9 |
+
This repository contains LoRA (Low-Rank Adaptation) adapter weights for fine-tuning a [Gemma 7B](https://huggingface.co/google/gemma2_9b_en) model on a custom dataset of [**briefly describe your dataset**].
|
10 |
+
|
11 |
+
**Important:** This is NOT a full model release. It only includes the LoRA adapter weights and a `config.json` to guide loading the model. You will need to write custom code to load the base Gemma model and apply the adapters.
|
12 |
+
|
13 |
+
## Model Fine-tuning Details
|
14 |
+
|
15 |
+
- **Base Model:** [google/gemma2_9b_en](https://huggingface.co/google/gemma2_9b_en)
|
16 |
+
- **Fine-tuning method:** LoRA ([https://arxiv.org/abs/2106.09685](https://arxiv.org/abs/2106.09685))
|
17 |
+
- **LoRA rank:** 8
|
18 |
+
- **Dataset:** [**Briefly describe your dataset and provide a link if possible**]
|
19 |
+
- **Training framework:** KerasNLP
|
20 |
+
|
21 |
+
## How to Use
|
22 |
+
|
23 |
+
This model release is not directly compatible with the `transformers` library's standard loading methods. You will need to:
|
24 |
+
|
25 |
+
1. **Load the Base Gemma Model:** Use KerasNLP to load the `google/gemma2_9b_en` base model.
|
26 |
+
2. **Enable LoRA:** Use KerasNLP's LoRA functionality to enable adapters on the appropriate layers of the Gemma model.
|
27 |
+
3. **Load Adapter Weights:** Load the `adapter_model.bin` and other relevant files from this repository to apply the fine-tuned adapter weights to the base Gemma model.
|
28 |
+
4. **Integration:** Integrate this custom loading process into your Hugging Face Transformers-based code.
|
29 |
+
|
30 |
+
**Example Code Structure (Conceptual):**
|
31 |
+
|
32 |
+
```python
|
33 |
+
import keras_nlp
|
34 |
+
from transformers import GemmaTokenizerFast # Or appropriate tokenizer
|
35 |
+
|
36 |
+
# ... Load base Gemma model using KerasNLP ...
|
37 |
+
|
38 |
+
# ... Enable LoRA adapters on target layers ...
|
39 |
+
|
40 |
+
# ... Load adapter weights from this repository ...
|
41 |
+
|
42 |
+
# ... Use tokenizer, model for generation or other tasks ...
|