ThomasCdnns
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,36 +1,70 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
|
4 |
-
- JLB-JLB/seizure_eeg_dev
|
5 |
-
metrics:
|
6 |
-
- accuracy: 0.86
|
7 |
tags:
|
8 |
-
-
|
|
|
|
|
9 |
- healthcare
|
10 |
- eeg
|
11 |
-
|
12 |
---
|
13 |
|
14 |
-
#
|
15 |
|
16 |
## Model Description
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
## Limitations
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
library_name: pytorch
|
|
|
|
|
|
|
4 |
tags:
|
5 |
+
- seizure-detection
|
6 |
+
- medical-imaging
|
7 |
+
- cnn
|
8 |
- healthcare
|
9 |
- eeg
|
10 |
+
pipeline_tag: image-classification
|
11 |
---
|
12 |
|
13 |
+
# SeizureDetectionCNN
|
14 |
|
15 |
## Model Description
|
16 |
|
17 |
+
SeizureDetectionCNN is a convolutional neural network designed for binary classification of seizure events using EEG data converted to images. The model employs a simple yet effective architecture with two convolutional layers followed by batch normalization and three fully connected layers.
|
18 |
+
|
19 |
+
### Model Architecture
|
20 |
+
|
21 |
+
```python
|
22 |
+
SeizureDetectionCNN(
|
23 |
+
(conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
24 |
+
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0)
|
25 |
+
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
26 |
+
(bn1): BatchNorm2d(32)
|
27 |
+
(bn2): BatchNorm2d(64)
|
28 |
+
(dropout): Dropout(p=0.5)
|
29 |
+
(fc1): Linear(in_features=4096, out_features=120)
|
30 |
+
(fc2): Linear(in_features=120, out_features=32)
|
31 |
+
(fc3): Linear(in_features=32, out_features=2)
|
32 |
+
)
|
33 |
+
```
|
34 |
+
|
35 |
+
### Input Description
|
36 |
+
|
37 |
+
Input images are preprocessed to 32x32 grayscale
|
38 |
+
Images are normalized with mean=[0.5] and std=[0.5]
|
39 |
+
Input tensor shape: (batch_size, 1, 32, 32)
|
40 |
|
41 |
+
### Preprocessing
|
42 |
+
pythonCopytransforms.Compose([
|
43 |
+
transforms.Grayscale(),
|
44 |
+
transforms.Resize((32, 32)),
|
45 |
+
transforms.ToTensor(),
|
46 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
47 |
+
])
|
48 |
|
49 |
+
## Training Procedure
|
50 |
|
51 |
+
### Architectural Features
|
52 |
|
53 |
+
2 Convolutional layers with ReLU activation
|
54 |
+
Batch Normalization after each convolutional layer
|
55 |
+
MaxPooling with kernel size 2
|
56 |
+
Dropout (p=0.5) for regularization
|
57 |
+
3 Fully connected layers
|
58 |
|
59 |
+
### Parameters
|
60 |
|
61 |
+
Total Parameters: ~500K
|
62 |
+
Input Channels: 1 (grayscale)
|
63 |
+
Output Classes: 2 (binary classification)
|
64 |
|
65 |
+
## Intended Uses & Limitations
|
66 |
+
### Intended Uses
|
67 |
|
68 |
+
Research and development in seizure detection
|
69 |
+
Processing of EEG data converted to image format
|
70 |
+
Binary classification of seizure/non-seizure events
|