ThomasCdnns commited on
Commit
4f9954d
·
verified ·
1 Parent(s): 81fd867

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -18
README.md CHANGED
@@ -1,36 +1,70 @@
1
  ---
2
  license: apache-2.0
3
- datasets:
4
- - JLB-JLB/seizure_eeg_dev
5
- metrics:
6
- - accuracy: 0.86
7
  tags:
8
- - biology
 
 
9
  - healthcare
10
  - eeg
11
- - seizure-detection
12
  ---
13
 
14
- # Seizure Detection EEG Model
15
 
16
  ## Model Description
17
 
18
- This model is designed to detect seizures from EEG (Electroencephalogram) data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- ### Performance
 
 
 
 
 
 
21
 
22
- - Accuracy: 86%
23
 
24
- ## Intended Use
25
 
26
- This model is intended for research purposes in analyzing EEG data for seizure detection patterns.
 
 
 
 
27
 
28
- ## Training Data
29
 
30
- The model was trained on the `JLB-JLB/seizure_eeg_dev` dataset, which contains EEG recordings.
 
 
31
 
32
- ## Limitations
 
33
 
34
- - This is a development model and should not be used for clinical decisions
35
- - Performance may vary across different EEG recording setups
36
- - Should be used only as part of a comprehensive medical evaluation
 
1
  ---
2
  license: apache-2.0
3
+ library_name: pytorch
 
 
 
4
  tags:
5
+ - seizure-detection
6
+ - medical-imaging
7
+ - cnn
8
  - healthcare
9
  - eeg
10
+ pipeline_tag: image-classification
11
  ---
12
 
13
+ # SeizureDetectionCNN
14
 
15
  ## Model Description
16
 
17
+ SeizureDetectionCNN is a convolutional neural network designed for binary classification of seizure events using EEG data converted to images. The model employs a simple yet effective architecture with two convolutional layers followed by batch normalization and three fully connected layers.
18
+
19
+ ### Model Architecture
20
+
21
+ ```python
22
+ SeizureDetectionCNN(
23
+ (conv1): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
24
+ (pool): MaxPool2d(kernel_size=2, stride=2, padding=0)
25
+ (conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
26
+ (bn1): BatchNorm2d(32)
27
+ (bn2): BatchNorm2d(64)
28
+ (dropout): Dropout(p=0.5)
29
+ (fc1): Linear(in_features=4096, out_features=120)
30
+ (fc2): Linear(in_features=120, out_features=32)
31
+ (fc3): Linear(in_features=32, out_features=2)
32
+ )
33
+ ```
34
+
35
+ ### Input Description
36
+
37
+ Input images are preprocessed to 32x32 grayscale
38
+ Images are normalized with mean=[0.5] and std=[0.5]
39
+ Input tensor shape: (batch_size, 1, 32, 32)
40
 
41
+ ### Preprocessing
42
+ pythonCopytransforms.Compose([
43
+ transforms.Grayscale(),
44
+ transforms.Resize((32, 32)),
45
+ transforms.ToTensor(),
46
+ transforms.Normalize(mean=[0.5], std=[0.5])
47
+ ])
48
 
49
+ ## Training Procedure
50
 
51
+ ### Architectural Features
52
 
53
+ 2 Convolutional layers with ReLU activation
54
+ Batch Normalization after each convolutional layer
55
+ MaxPooling with kernel size 2
56
+ Dropout (p=0.5) for regularization
57
+ 3 Fully connected layers
58
 
59
+ ### Parameters
60
 
61
+ Total Parameters: ~500K
62
+ Input Channels: 1 (grayscale)
63
+ Output Classes: 2 (binary classification)
64
 
65
+ ## Intended Uses & Limitations
66
+ ### Intended Uses
67
 
68
+ Research and development in seizure detection
69
+ Processing of EEG data converted to image format
70
+ Binary classification of seizure/non-seizure events