Theivaprakasham
commited on
Commit
•
fb92bbb
1
Parent(s):
e3c4ffa
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- sroie
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-sroie
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: sroie
|
19 |
+
type: sroie
|
20 |
+
args: sroie
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.9362154500354358
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.9517291066282421
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9439085387638442
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.9951776838044365
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# layoutlmv3-finetuned-sroie
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.0288
|
44 |
+
- Precision: 0.9362
|
45 |
+
- Recall: 0.9517
|
46 |
+
- F1: 0.9439
|
47 |
+
- Accuracy: 0.9952
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-05
|
67 |
+
- train_batch_size: 2
|
68 |
+
- eval_batch_size: 2
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 2000
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 0.32 | 100 | 0.1063 | 0.6851 | 0.6599 | 0.6723 | 0.9739 |
|
79 |
+
| No log | 0.64 | 200 | 0.0583 | 0.7849 | 0.7860 | 0.7855 | 0.9843 |
|
80 |
+
| No log | 0.96 | 300 | 0.0475 | 0.8463 | 0.8610 | 0.8536 | 0.9884 |
|
81 |
+
| No log | 1.28 | 400 | 0.0437 | 0.8566 | 0.8739 | 0.8652 | 0.9894 |
|
82 |
+
| 0.1215 | 1.6 | 500 | 0.0424 | 0.8616 | 0.9063 | 0.8834 | 0.9895 |
|
83 |
+
| 0.1215 | 1.92 | 600 | 0.0332 | 0.8702 | 0.9323 | 0.9002 | 0.9924 |
|
84 |
+
| 0.1215 | 2.24 | 700 | 0.0318 | 0.8979 | 0.9373 | 0.9172 | 0.9932 |
|
85 |
+
| 0.1215 | 2.56 | 800 | 0.0316 | 0.9092 | 0.9445 | 0.9265 | 0.9936 |
|
86 |
+
| 0.1215 | 2.88 | 900 | 0.0295 | 0.8982 | 0.9467 | 0.9218 | 0.9937 |
|
87 |
+
| 0.0286 | 3.19 | 1000 | 0.0329 | 0.8685 | 0.9517 | 0.9082 | 0.9930 |
|
88 |
+
| 0.0286 | 3.51 | 1100 | 0.0289 | 0.9298 | 0.9352 | 0.9325 | 0.9945 |
|
89 |
+
| 0.0286 | 3.83 | 1200 | 0.0287 | 0.9202 | 0.9474 | 0.9336 | 0.9946 |
|
90 |
+
| 0.0286 | 4.15 | 1300 | 0.0301 | 0.9174 | 0.9524 | 0.9346 | 0.9947 |
|
91 |
+
| 0.0286 | 4.47 | 1400 | 0.0268 | 0.9212 | 0.9431 | 0.9320 | 0.9946 |
|
92 |
+
| 0.017 | 4.79 | 1500 | 0.0307 | 0.9236 | 0.9488 | 0.9360 | 0.9944 |
|
93 |
+
| 0.017 | 5.11 | 1600 | 0.0286 | 0.9335 | 0.9503 | 0.9418 | 0.9951 |
|
94 |
+
| 0.017 | 5.43 | 1700 | 0.0287 | 0.9284 | 0.9618 | 0.9448 | 0.9951 |
|
95 |
+
| 0.017 | 5.75 | 1800 | 0.0278 | 0.9334 | 0.9496 | 0.9414 | 0.9952 |
|
96 |
+
| 0.017 | 6.07 | 1900 | 0.0289 | 0.9337 | 0.9539 | 0.9437 | 0.9952 |
|
97 |
+
| 0.0111 | 6.39 | 2000 | 0.0288 | 0.9362 | 0.9517 | 0.9439 | 0.9952 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.20.0.dev0
|
103 |
+
- Pytorch 1.11.0+cu113
|
104 |
+
- Datasets 2.2.2
|
105 |
+
- Tokenizers 0.12.1
|