Theivaprakasham commited on
Commit
fb92bbb
1 Parent(s): e3c4ffa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - sroie
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-finetuned-sroie
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: sroie
19
+ type: sroie
20
+ args: sroie
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.9362154500354358
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.9517291066282421
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9439085387638442
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.9951776838044365
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # layoutlmv3-finetuned-sroie
40
+
41
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.0288
44
+ - Precision: 0.9362
45
+ - Recall: 0.9517
46
+ - F1: 0.9439
47
+ - Accuracy: 0.9952
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 1e-05
67
+ - train_batch_size: 2
68
+ - eval_batch_size: 2
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - training_steps: 2000
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 0.32 | 100 | 0.1063 | 0.6851 | 0.6599 | 0.6723 | 0.9739 |
79
+ | No log | 0.64 | 200 | 0.0583 | 0.7849 | 0.7860 | 0.7855 | 0.9843 |
80
+ | No log | 0.96 | 300 | 0.0475 | 0.8463 | 0.8610 | 0.8536 | 0.9884 |
81
+ | No log | 1.28 | 400 | 0.0437 | 0.8566 | 0.8739 | 0.8652 | 0.9894 |
82
+ | 0.1215 | 1.6 | 500 | 0.0424 | 0.8616 | 0.9063 | 0.8834 | 0.9895 |
83
+ | 0.1215 | 1.92 | 600 | 0.0332 | 0.8702 | 0.9323 | 0.9002 | 0.9924 |
84
+ | 0.1215 | 2.24 | 700 | 0.0318 | 0.8979 | 0.9373 | 0.9172 | 0.9932 |
85
+ | 0.1215 | 2.56 | 800 | 0.0316 | 0.9092 | 0.9445 | 0.9265 | 0.9936 |
86
+ | 0.1215 | 2.88 | 900 | 0.0295 | 0.8982 | 0.9467 | 0.9218 | 0.9937 |
87
+ | 0.0286 | 3.19 | 1000 | 0.0329 | 0.8685 | 0.9517 | 0.9082 | 0.9930 |
88
+ | 0.0286 | 3.51 | 1100 | 0.0289 | 0.9298 | 0.9352 | 0.9325 | 0.9945 |
89
+ | 0.0286 | 3.83 | 1200 | 0.0287 | 0.9202 | 0.9474 | 0.9336 | 0.9946 |
90
+ | 0.0286 | 4.15 | 1300 | 0.0301 | 0.9174 | 0.9524 | 0.9346 | 0.9947 |
91
+ | 0.0286 | 4.47 | 1400 | 0.0268 | 0.9212 | 0.9431 | 0.9320 | 0.9946 |
92
+ | 0.017 | 4.79 | 1500 | 0.0307 | 0.9236 | 0.9488 | 0.9360 | 0.9944 |
93
+ | 0.017 | 5.11 | 1600 | 0.0286 | 0.9335 | 0.9503 | 0.9418 | 0.9951 |
94
+ | 0.017 | 5.43 | 1700 | 0.0287 | 0.9284 | 0.9618 | 0.9448 | 0.9951 |
95
+ | 0.017 | 5.75 | 1800 | 0.0278 | 0.9334 | 0.9496 | 0.9414 | 0.9952 |
96
+ | 0.017 | 6.07 | 1900 | 0.0289 | 0.9337 | 0.9539 | 0.9437 | 0.9952 |
97
+ | 0.0111 | 6.39 | 2000 | 0.0288 | 0.9362 | 0.9517 | 0.9439 | 0.9952 |
98
+
99
+
100
+ ### Framework versions
101
+
102
+ - Transformers 4.20.0.dev0
103
+ - Pytorch 1.11.0+cu113
104
+ - Datasets 2.2.2
105
+ - Tokenizers 0.12.1