Theivaprakasham
commited on
Commit
•
6c8e3d5
1
Parent(s):
4695c17
update model card README.md
Browse files
README.md
CHANGED
@@ -21,16 +21,16 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
-
value: 0.
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
-
value: 0.
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
-
value: 0.
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Precision: 0.
|
45 |
-
- Recall: 0.
|
46 |
-
- F1: 0.
|
47 |
-
- Accuracy: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -69,32 +69,62 @@ The following hyperparameters were used during training:
|
|
69 |
- seed: 42
|
70 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
- lr_scheduler_type: linear
|
72 |
-
- training_steps:
|
73 |
|
74 |
### Training results
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
-
| No log | 0.32 | 100 | 0.
|
79 |
-
| No log | 0.64 | 200 | 0.
|
80 |
-
| No log | 0.96 | 300 | 0.
|
81 |
-
| No log | 1.28 | 400 | 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Precision
|
23 |
type: precision
|
24 |
+
value: 0.9370529327610873
|
25 |
- name: Recall
|
26 |
type: recall
|
27 |
+
value: 0.9438040345821326
|
28 |
- name: F1
|
29 |
type: f1
|
30 |
+
value: 0.9404163675520459
|
31 |
- name: Accuracy
|
32 |
type: accuracy
|
33 |
+
value: 0.9945347083116948
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.0426
|
44 |
+
- Precision: 0.9371
|
45 |
+
- Recall: 0.9438
|
46 |
+
- F1: 0.9404
|
47 |
+
- Accuracy: 0.9945
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
69 |
- seed: 42
|
70 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 5000
|
73 |
|
74 |
### Training results
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 0.32 | 100 | 0.1127 | 0.6466 | 0.6102 | 0.6279 | 0.9729 |
|
79 |
+
| No log | 0.64 | 200 | 0.0663 | 0.8215 | 0.7428 | 0.7802 | 0.9821 |
|
80 |
+
| No log | 0.96 | 300 | 0.0563 | 0.8051 | 0.8718 | 0.8371 | 0.9855 |
|
81 |
+
| No log | 1.28 | 400 | 0.0470 | 0.8766 | 0.8595 | 0.8680 | 0.9895 |
|
82 |
+
| 0.1328 | 1.6 | 500 | 0.0419 | 0.8613 | 0.9128 | 0.8863 | 0.9906 |
|
83 |
+
| 0.1328 | 1.92 | 600 | 0.0338 | 0.8888 | 0.9099 | 0.8993 | 0.9926 |
|
84 |
+
| 0.1328 | 2.24 | 700 | 0.0320 | 0.8690 | 0.9467 | 0.9062 | 0.9929 |
|
85 |
+
| 0.1328 | 2.56 | 800 | 0.0348 | 0.8960 | 0.9438 | 0.9193 | 0.9931 |
|
86 |
+
| 0.1328 | 2.88 | 900 | 0.0300 | 0.9169 | 0.9460 | 0.9312 | 0.9942 |
|
87 |
+
| 0.029 | 3.19 | 1000 | 0.0281 | 0.9080 | 0.9452 | 0.9262 | 0.9942 |
|
88 |
+
| 0.029 | 3.51 | 1100 | 0.0259 | 0.9174 | 0.9438 | 0.9304 | 0.9945 |
|
89 |
+
| 0.029 | 3.83 | 1200 | 0.0309 | 0.9207 | 0.9532 | 0.9366 | 0.9944 |
|
90 |
+
| 0.029 | 4.15 | 1300 | 0.0366 | 0.9195 | 0.9388 | 0.9291 | 0.9940 |
|
91 |
+
| 0.029 | 4.47 | 1400 | 0.0302 | 0.9343 | 0.9424 | 0.9383 | 0.9949 |
|
92 |
+
| 0.0174 | 4.79 | 1500 | 0.0349 | 0.9142 | 0.9517 | 0.9326 | 0.9939 |
|
93 |
+
| 0.0174 | 5.11 | 1600 | 0.0327 | 0.9322 | 0.9510 | 0.9415 | 0.9950 |
|
94 |
+
| 0.0174 | 5.43 | 1700 | 0.0317 | 0.9215 | 0.9561 | 0.9385 | 0.9938 |
|
95 |
+
| 0.0174 | 5.75 | 1800 | 0.0385 | 0.9282 | 0.9316 | 0.9299 | 0.9940 |
|
96 |
+
| 0.0174 | 6.07 | 1900 | 0.0342 | 0.9235 | 0.9481 | 0.9357 | 0.9944 |
|
97 |
+
| 0.0117 | 6.39 | 2000 | 0.0344 | 0.9287 | 0.9474 | 0.9379 | 0.9944 |
|
98 |
+
| 0.0117 | 6.71 | 2100 | 0.0388 | 0.9232 | 0.9445 | 0.9338 | 0.9941 |
|
99 |
+
| 0.0117 | 7.03 | 2200 | 0.0325 | 0.9269 | 0.9496 | 0.9381 | 0.9949 |
|
100 |
+
| 0.0117 | 7.35 | 2300 | 0.0343 | 0.9225 | 0.9438 | 0.9330 | 0.9941 |
|
101 |
+
| 0.0117 | 7.67 | 2400 | 0.0372 | 0.9216 | 0.9481 | 0.9347 | 0.9944 |
|
102 |
+
| 0.0081 | 7.99 | 2500 | 0.0385 | 0.9192 | 0.9589 | 0.9386 | 0.9944 |
|
103 |
+
| 0.0081 | 8.31 | 2600 | 0.0376 | 0.9293 | 0.9467 | 0.9379 | 0.9944 |
|
104 |
+
| 0.0081 | 8.63 | 2700 | 0.0425 | 0.9261 | 0.9474 | 0.9366 | 0.9941 |
|
105 |
+
| 0.0081 | 8.95 | 2800 | 0.0407 | 0.9266 | 0.9452 | 0.9358 | 0.9941 |
|
106 |
+
| 0.0081 | 9.27 | 2900 | 0.0403 | 0.9280 | 0.9467 | 0.9372 | 0.9941 |
|
107 |
+
| 0.0055 | 9.58 | 3000 | 0.0364 | 0.9287 | 0.9474 | 0.9379 | 0.9948 |
|
108 |
+
| 0.0055 | 9.9 | 3100 | 0.0427 | 0.9122 | 0.9510 | 0.9312 | 0.9941 |
|
109 |
+
| 0.0055 | 10.22 | 3200 | 0.0394 | 0.9223 | 0.9488 | 0.9354 | 0.9943 |
|
110 |
+
| 0.0055 | 10.54 | 3300 | 0.0393 | 0.9247 | 0.9561 | 0.9401 | 0.9945 |
|
111 |
+
| 0.0055 | 10.86 | 3400 | 0.0413 | 0.9334 | 0.9496 | 0.9414 | 0.9945 |
|
112 |
+
| 0.0049 | 11.18 | 3500 | 0.0400 | 0.9290 | 0.9517 | 0.9402 | 0.9945 |
|
113 |
+
| 0.0049 | 11.5 | 3600 | 0.0412 | 0.9317 | 0.9539 | 0.9427 | 0.9945 |
|
114 |
+
| 0.0049 | 11.82 | 3700 | 0.0419 | 0.9314 | 0.9481 | 0.9397 | 0.9947 |
|
115 |
+
| 0.0049 | 12.14 | 3800 | 0.0452 | 0.9243 | 0.9503 | 0.9371 | 0.9941 |
|
116 |
+
| 0.0049 | 12.46 | 3900 | 0.0412 | 0.9334 | 0.9496 | 0.9414 | 0.9947 |
|
117 |
+
| 0.0039 | 12.78 | 4000 | 0.0438 | 0.9294 | 0.9481 | 0.9387 | 0.9941 |
|
118 |
+
| 0.0039 | 13.1 | 4100 | 0.0416 | 0.9326 | 0.9467 | 0.9396 | 0.9944 |
|
119 |
+
| 0.0039 | 13.42 | 4200 | 0.0418 | 0.9327 | 0.9488 | 0.9407 | 0.9948 |
|
120 |
+
| 0.0039 | 13.74 | 4300 | 0.0423 | 0.9345 | 0.9460 | 0.9402 | 0.9946 |
|
121 |
+
| 0.0039 | 14.06 | 4400 | 0.0419 | 0.9286 | 0.9467 | 0.9376 | 0.9947 |
|
122 |
+
| 0.0022 | 14.38 | 4500 | 0.0426 | 0.9371 | 0.9438 | 0.9404 | 0.9945 |
|
123 |
+
| 0.0022 | 14.7 | 4600 | 0.0424 | 0.9371 | 0.9445 | 0.9408 | 0.9947 |
|
124 |
+
| 0.0022 | 15.02 | 4700 | 0.0427 | 0.9372 | 0.9467 | 0.9419 | 0.9947 |
|
125 |
+
| 0.0022 | 15.34 | 4800 | 0.0431 | 0.9339 | 0.9460 | 0.9399 | 0.9945 |
|
126 |
+
| 0.0022 | 15.65 | 4900 | 0.0431 | 0.9346 | 0.9467 | 0.9406 | 0.9946 |
|
127 |
+
| 0.0015 | 15.97 | 5000 | 0.0434 | 0.9324 | 0.9445 | 0.9384 | 0.9945 |
|
128 |
|
129 |
|
130 |
### Framework versions
|