|
import json |
|
import os |
|
import re |
|
from typing import List, Optional, Union, Dict |
|
from sentencepiece import SentencePieceProcessor |
|
from transformers import PreTrainedTokenizer |
|
from transformers.utils import logging, PaddingStrategy |
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class SPTokenizer: |
|
def __init__(self, model_path: str): |
|
|
|
assert os.path.isfile(model_path), model_path |
|
self.sp_model = SentencePieceProcessor(model_file=model_path) |
|
|
|
|
|
self.n_words: int = self.sp_model.vocab_size() |
|
self.bos_id: int = self.sp_model.bos_id() |
|
self.eos_id: int = self.sp_model.eos_id() |
|
self.pad_id: int = self.sp_model.unk_id() |
|
|
|
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() |
|
|
|
|
|
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] |
|
|
|
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens |
|
|
|
self.special_tokens = {} |
|
self.index_special_tokens = {} |
|
for token in special_tokens: |
|
|
|
self.special_tokens[token] = self.n_words |
|
self.index_special_tokens[self.n_words] = token |
|
self.n_words += 1 |
|
|
|
self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) |
|
|
|
def tokenize(self, s: str, encode_special_tokens=False): |
|
""" 对输入字符串进行分词操作,可选择是否编码特殊token |
|
""" |
|
if encode_special_tokens: |
|
|
|
last_index = 0 |
|
t = [] |
|
for match in re.finditer(self.role_special_token_expression, s): |
|
|
|
if last_index < match.start(): |
|
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()])) |
|
|
|
t.append(s[match.start():match.end()]) |
|
last_index = match.end() |
|
|
|
if last_index < len(s): |
|
t.extend(self.sp_model.EncodeAsPieces(s[last_index:])) |
|
return t |
|
else: |
|
|
|
return self.sp_model.EncodeAsPieces(s) |
|
|
|
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: |
|
""" |
|
将字符串转化为ID列表,可选择是否添加BOS/EOS token。对于特殊字符,将会被分开 |
|
""" |
|
assert type(s) is str |
|
t = self.sp_model.encode(s) |
|
if bos: |
|
t = [self.bos_id] + t |
|
if eos: |
|
t = t + [self.eos_id] |
|
return t |
|
|
|
def decode(self, t: List[int]) -> str: |
|
""" 将ID列表解码为字符串 |
|
""" |
|
text, buffer = "", [] |
|
for token in t: |
|
|
|
if token in self.index_special_tokens: |
|
if buffer: |
|
text += self.sp_model.decode(buffer) |
|
buffer = [] |
|
text += self.index_special_tokens[token] |
|
else: |
|
buffer.append(token) |
|
|
|
if buffer: |
|
text += self.sp_model.decode(buffer) |
|
return text |
|
|
|
def decode_tokens(self, tokens: List[str]) -> str: |
|
""" 将分词结果(List[str])解码为字符串 |
|
""" |
|
text = self.sp_model.DecodePieces(tokens) |
|
return text |
|
|
|
def convert_token_to_id(self, token): |
|
""" 将给定的token字符串转化为对应的ID |
|
""" |
|
if token in self.special_tokens: |
|
return self.special_tokens[token] |
|
return self.sp_model.PieceToId(token) |
|
|
|
def convert_id_to_token(self, index): |
|
""" 将给定的ID转化为对应的token字符串 |
|
""" |
|
|
|
if index in self.index_special_tokens: |
|
return self.index_special_tokens[index] |
|
|
|
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size(): |
|
return "" |
|
|
|
return self.sp_model.IdToPiece(index) |
|
|
|
|
|
class ChatGLMTokenizer(PreTrainedTokenizer): |
|
|
|
vocab_files_names = {"vocab_file": "tokenizer.model"} |
|
|
|
model_input_names = ["input_ids", "attention_mask", "position_ids"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
padding_side="left", |
|
clean_up_tokenization_spaces=False, |
|
encode_special_tokens=False, |
|
**kwargs |
|
): |
|
|
|
self.name = "GLMTokenizer" |
|
|
|
self.vocab_file = vocab_file |
|
|
|
self.tokenizer = SPTokenizer(vocab_file) |
|
|
|
self.special_tokens = { |
|
"<bos>": self.tokenizer.bos_id, |
|
"<eos>": self.tokenizer.eos_id, |
|
"<unk>": self.tokenizer.pad_id, |
|
"<pad>": self.tokenizer.pad_id |
|
} |
|
self.encode_special_tokens = encode_special_tokens |
|
|
|
super().__init__( |
|
padding_side=padding_side, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs |
|
) |
|
|
|
def get_command(self, token): |
|
""" 获取指定特殊 token 对应的 id |
|
""" |
|
if token in self.special_tokens: |
|
return self.special_tokens[token] |
|
|
|
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" |
|
return self.tokenizer.special_tokens[token] |
|
|
|
@property |
|
def unk_token(self) -> str: |
|
""" 通过ID获取未登录词、填充符和结束符的字符串形式 |
|
""" |
|
return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>")) |
|
|
|
@property |
|
def pad_token(self) -> str: |
|
return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>")) |
|
|
|
@property |
|
def eos_token(self) -> str: |
|
return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>")) |
|
|
|
@property |
|
def unk_token_id(self) -> int: |
|
""" 获取未登录词、填充符和结束符的ID形式 |
|
""" |
|
return self.get_command("<unk>") |
|
|
|
@property |
|
def pad_token_id(self) -> int: |
|
return self.get_command("<pad>") |
|
|
|
@property |
|
def eos_token_id(self): |
|
return self.get_command("<eos>") |
|
|
|
@unk_token.setter |
|
def unk_token(self, value): |
|
""" 不支持设置未登录词、填充符和结束符,输出警告信息 |
|
""" |
|
logger.warning("Setting unk_token is not supported, use the default one.") |
|
|
|
@pad_token.setter |
|
def pad_token(self, value): |
|
logger.warning("Setting pad_token is not supported, use the default one.") |
|
|
|
@eos_token.setter |
|
def eos_token(self, value): |
|
logger.warning("Setting eos_token is not supported, use the default one.") |
|
|
|
@property |
|
def vocab_size(self): |
|
""" 返回整个词汇表的大小 |
|
""" |
|
return self.tokenizer.n_words |
|
|
|
def get_vocab(self): |
|
""" 获取词汇表字典,其中键是token,值是其对应的ID |
|
""" |
|
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" 实现分词功能,利用SPTokenizer进行分词操作 |
|
""" |
|
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens) |
|
|
|
def _convert_token_to_id(self, token): |
|
""" 将token字符串转化为ID |
|
""" |
|
return self.tokenizer.convert_token_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
""" 将ID转化为token字符串 |
|
""" |
|
return self.tokenizer.convert_id_to_token(index) |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
""" 将分词结果的tokens列表还原为字符串 |
|
""" |
|
return self.tokenizer.decode_tokens(tokens) |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix=None): |
|
""" 将词汇表和特殊令牌token保存到指定目录。 |
|
|
|
Args: |
|
save_directory (`str`): 将词汇表和特殊令牌文件保存到指定目录。 |
|
filename_prefix (`str`, *optional*): 可选添加到保存文件名前的前缀。 |
|
|
|
Returns: |
|
`Tuple(str)`: 保存文件的路径 |
|
""" |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, self.vocab_files_names["vocab_file"] |
|
) |
|
else: |
|
vocab_file = save_directory |
|
|
|
with open(self.vocab_file, 'rb') as fin: |
|
proto_str = fin.read() |
|
|
|
with open(vocab_file, "wb") as writer: |
|
writer.write(proto_str) |
|
|
|
return (vocab_file,) |
|
|
|
def get_prefix_tokens(self): |
|
""" 获取用于模型输入的前缀 token |
|
""" |
|
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] |
|
return prefix_tokens |
|
|
|
def build_single_message(self, role, metadata, message): |
|
""" 构建单条消息的 token 序列 |
|
""" |
|
assert role in ["system", "user", "assistant", "observation"], role |
|
|
|
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n") |
|
|
|
message_tokens = self.tokenizer.encode(message) |
|
|
|
tokens = role_tokens + message_tokens |
|
return tokens |
|
|
|
def build_chat_input(self, query, history=None, role="user"): |
|
""" 根据对话历史及当前query构建模型输入 |
|
""" |
|
if history is None: |
|
history = [] |
|
input_ids = [] |
|
|
|
for item in history: |
|
|
|
content = item["content"] |
|
|
|
if item["role"] == "system" and "tools" in item: |
|
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False) |
|
|
|
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content)) |
|
|
|
input_ids.extend(self.build_single_message(role, "", query)) |
|
|
|
input_ids.extend([self.get_command("<|assistant|>")]) |
|
|
|
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" 通过拼接和添加特殊标记,从一个或两个序列构建用于序列分类任务的模型输入。 |
|
|
|
BERT序列格式如下: |
|
- 单一序列:`[CLS] X [SEP]` |
|
- 序列对:`[CLS] A [SEP] B [SEP]` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): 将添加特殊token的IDs列表 |
|
token_ids_1 (`List[int]`, *optional*): 可选的第二个序列的IDs列表,用于序列对。 |
|
|
|
Returns: |
|
`List[int]`: 包含适当特殊标记的[输入IDs](../glossary#input-ids)列表。 |
|
""" |
|
|
|
prefix_tokens = self.get_prefix_tokens() |
|
|
|
token_ids_0 = prefix_tokens + token_ids_0 |
|
|
|
if token_ids_1 is not None: |
|
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] |
|
return token_ids_0 |
|
|
|
def _pad( |
|
self, |
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], |
|
max_length: Optional[int] = None, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
) -> dict: |
|
""" 此方法用于对编码后的输入进行填充(左右两侧填充,直至达到预设长度或批次中的最大长度) |
|
|
|
Args: |
|
encoded_inputs: 字典形式的编码后输入,键为特征名称,值为整数列表(例如,`List[int]`),或者一批编码后的输入(例如,`List[List[int]]`)。 |
|
max_length: 返回列表的最大长度,也可作为填充长度 |
|
padding_strategy: 填充策略,有以下选项: |
|
- PaddingStrategy.LONGEST : 根据批次中最长序列进行填充 |
|
- PaddingStrategy.MAX_LENGTH: 默认策略,填充至最大长度 |
|
- PaddingStrategy.DO_NOT_PAD: 不进行填充 |
|
本tokenizer的填充方向由self.padding_side属性决定: |
|
- 'left': 在序列左侧填充 |
|
- 'right': 在序列右侧填充 |
|
pad_to_multiple_of: (可选)若设置,则将序列填充至给定值的倍数。这对于在NVIDIA硬件上启用具有计算能力`>= 7.5`(Volta及以上)的Tensor Core非常有用。 |
|
return_attention_mask:(可选)若设置为False,则避免返回注意力掩码(默认:根据模型特性设置 |
|
""" |
|
|
|
assert self.padding_side == "left" |
|
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]] |
|
seq_length = len(required_input) |
|
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_length = len(required_input) |
|
|
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): |
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of |
|
|
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length |
|
|
|
|
|
if "attention_mask" not in encoded_inputs: |
|
encoded_inputs["attention_mask"] = [1] * seq_length |
|
|
|
if "position_ids" not in encoded_inputs: |
|
encoded_inputs["position_ids"] = list(range(seq_length)) |
|
|
|
|
|
if needs_to_be_padded: |
|
difference = max_length - len(required_input) |
|
|
|
if "attention_mask" in encoded_inputs: |
|
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] |
|
|
|
if "position_ids" in encoded_inputs: |
|
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] |
|
|
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input |
|
|
|
return encoded_inputs |
|
|