TheBloke commited on
Commit
ba0aceb
1 Parent(s): 4ecbfd2

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +443 -0
README.md ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: orangetin/OpenHermes-Mixtral-8x7B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ model-index:
8
+ - name: OpenHermes-Mixtral-8x7B
9
+ results: []
10
+ model_creator: OrangeTin
11
+ model_name: Orangetin OpenHermes Mixtral 8X7B
12
+ model_type: mixtral
13
+ prompt_template: '[INST] <<SYS>>
14
+
15
+ {system_message}
16
+
17
+ <</SYS>>
18
+
19
+ {prompt} [/INST]
20
+
21
+ '
22
+ quantized_by: TheBloke
23
+ tags:
24
+ - mixtral
25
+ - instruct
26
+ - finetune
27
+ - llama
28
+ - gpt4
29
+ - synthetic data
30
+ - distillation
31
+ ---
32
+ <!-- markdownlint-disable MD041 -->
33
+
34
+ <!-- header start -->
35
+ <!-- 200823 -->
36
+ <div style="width: auto; margin-left: auto; margin-right: auto">
37
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
38
+ </div>
39
+ <div style="display: flex; justify-content: space-between; width: 100%;">
40
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
42
+ </div>
43
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
45
+ </div>
46
+ </div>
47
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
48
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
49
+ <!-- header end -->
50
+
51
+ # Orangetin OpenHermes Mixtral 8X7B - AWQ
52
+ - Model creator: [OrangeTin](https://huggingface.co/orangetin)
53
+ - Original model: [Orangetin OpenHermes Mixtral 8X7B](https://huggingface.co/orangetin/OpenHermes-Mixtral-8x7B)
54
+
55
+ <!-- description start -->
56
+ ## Description
57
+
58
+ This repo contains AWQ model files for [OrangeTin's Orangetin OpenHermes Mixtral 8X7B](https://huggingface.co/orangetin/OpenHermes-Mixtral-8x7B).
59
+
60
+
61
+ **MIXTRAL AWQ**
62
+
63
+ This is a Mixtral AWQ model.
64
+
65
+ For AutoAWQ inference, please install AutoAWQ from source.
66
+
67
+ Support via Transformers is coming soon, via this PR: https://github.com/huggingface/transformers/pull/27950 which should be merged to Transformers `main` very soon.
68
+
69
+ Support via vLLM and TGI has not yet been confirmed.
70
+
71
+ ### About AWQ
72
+
73
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
74
+
75
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
76
+
77
+ AWQ models are supported by (note that not all of these may support Mixtral models yet):
78
+
79
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
80
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
81
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
82
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
83
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
84
+
85
+ <!-- description end -->
86
+ <!-- repositories-available start -->
87
+ ## Repositories available
88
+
89
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ)
90
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orangetin-OpenHermes-Mixtral-8x7B-GPTQ)
91
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/orangetin-OpenHermes-Mixtral-8x7B-GGUF)
92
+ * [OrangeTin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/orangetin/OpenHermes-Mixtral-8x7B)
93
+ <!-- repositories-available end -->
94
+
95
+ <!-- prompt-template start -->
96
+ ## Prompt template: Llama-2-Chat
97
+
98
+ ```
99
+ [INST] <<SYS>>
100
+ {system_message}
101
+ <</SYS>>
102
+ {prompt} [/INST]
103
+
104
+ ```
105
+
106
+ <!-- prompt-template end -->
107
+
108
+
109
+ <!-- README_AWQ.md-provided-files start -->
110
+ ## Provided files, and AWQ parameters
111
+
112
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
113
+
114
+ Models are released as sharded safetensors files.
115
+
116
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
117
+ | ------ | ---- | -- | ----------- | ------- | ---- |
118
+ | [main](https://huggingface.co/TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.65 GB
119
+
120
+ <!-- README_AWQ.md-provided-files end -->
121
+
122
+ <!-- README_AWQ.md-text-generation-webui start -->
123
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
124
+
125
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
126
+
127
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
128
+
129
+ 1. Click the **Model tab**.
130
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ`.
131
+ 3. Click **Download**.
132
+ 4. The model will start downloading. Once it's finished it will say "Done".
133
+ 5. In the top left, click the refresh icon next to **Model**.
134
+ 6. In the **Model** dropdown, choose the model you just downloaded: `orangetin-OpenHermes-Mixtral-8x7B-AWQ`
135
+ 7. Select **Loader: AutoAWQ**.
136
+ 8. Click Load, and the model will load and is now ready for use.
137
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
138
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
139
+ <!-- README_AWQ.md-text-generation-webui end -->
140
+
141
+ <!-- README_AWQ.md-use-from-vllm start -->
142
+ ## Multi-user inference server: vLLM
143
+
144
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
145
+
146
+ - Please ensure you are using vLLM version 0.2 or later.
147
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
148
+
149
+ For example:
150
+
151
+ ```shell
152
+ python3 -m vllm.entrypoints.api_server --model TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ --quantization awq --dtype auto
153
+ ```
154
+
155
+ - When using vLLM from Python code, again set `quantization=awq`.
156
+
157
+ For example:
158
+
159
+ ```python
160
+ from vllm import LLM, SamplingParams
161
+
162
+ prompts = [
163
+ "Tell me about AI",
164
+ "Write a story about llamas",
165
+ "What is 291 - 150?",
166
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
167
+ ]
168
+ prompt_template=f'''[INST] <<SYS>>
169
+ {system_message}
170
+ <</SYS>>
171
+ {prompt} [/INST]
172
+ '''
173
+
174
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
175
+
176
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
177
+
178
+ llm = LLM(model="TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ", quantization="awq", dtype="auto")
179
+
180
+ outputs = llm.generate(prompts, sampling_params)
181
+
182
+ # Print the outputs.
183
+ for output in outputs:
184
+ prompt = output.prompt
185
+ generated_text = output.outputs[0].text
186
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
187
+ ```
188
+ <!-- README_AWQ.md-use-from-vllm start -->
189
+
190
+ <!-- README_AWQ.md-use-from-tgi start -->
191
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
192
+
193
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
194
+
195
+ Example Docker parameters:
196
+
197
+ ```shell
198
+ --model-id TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
199
+ ```
200
+
201
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
202
+
203
+ ```shell
204
+ pip3 install huggingface-hub
205
+ ```
206
+
207
+ ```python
208
+ from huggingface_hub import InferenceClient
209
+
210
+ endpoint_url = "https://your-endpoint-url-here"
211
+
212
+ prompt = "Tell me about AI"
213
+ prompt_template=f'''[INST] <<SYS>>
214
+ {system_message}
215
+ <</SYS>>
216
+ {prompt} [/INST]
217
+ '''
218
+
219
+ client = InferenceClient(endpoint_url)
220
+ response = client.text_generation(prompt,
221
+ max_new_tokens=128,
222
+ do_sample=True,
223
+ temperature=0.7,
224
+ top_p=0.95,
225
+ top_k=40,
226
+ repetition_penalty=1.1)
227
+
228
+ print(f"Model output: ", response)
229
+ ```
230
+ <!-- README_AWQ.md-use-from-tgi end -->
231
+
232
+ <!-- README_AWQ.md-use-from-python start -->
233
+ ## Inference from Python code using Transformers
234
+
235
+ ### Install the necessary packages
236
+
237
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
238
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
239
+
240
+ ```shell
241
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
242
+ ```
243
+
244
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
245
+
246
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
247
+
248
+ ```shell
249
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
250
+ ```
251
+
252
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
253
+
254
+ ```shell
255
+ pip3 uninstall -y autoawq
256
+ git clone https://github.com/casper-hansen/AutoAWQ
257
+ cd AutoAWQ
258
+ pip3 install .
259
+ ```
260
+
261
+ ### Transformers example code (requires Transformers 4.35.0 and later)
262
+
263
+ ```python
264
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
265
+
266
+ model_name_or_path = "TheBloke/orangetin-OpenHermes-Mixtral-8x7B-AWQ"
267
+
268
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
269
+ model = AutoModelForCausalLM.from_pretrained(
270
+ model_name_or_path,
271
+ low_cpu_mem_usage=True,
272
+ device_map="cuda:0"
273
+ )
274
+
275
+ # Using the text streamer to stream output one token at a time
276
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
277
+
278
+ prompt = "Tell me about AI"
279
+ prompt_template=f'''[INST] <<SYS>>
280
+ {system_message}
281
+ <</SYS>>
282
+ {prompt} [/INST]
283
+ '''
284
+
285
+ # Convert prompt to tokens
286
+ tokens = tokenizer(
287
+ prompt_template,
288
+ return_tensors='pt'
289
+ ).input_ids.cuda()
290
+
291
+ generation_params = {
292
+ "do_sample": True,
293
+ "temperature": 0.7,
294
+ "top_p": 0.95,
295
+ "top_k": 40,
296
+ "max_new_tokens": 512,
297
+ "repetition_penalty": 1.1
298
+ }
299
+
300
+ # Generate streamed output, visible one token at a time
301
+ generation_output = model.generate(
302
+ tokens,
303
+ streamer=streamer,
304
+ **generation_params
305
+ )
306
+
307
+ # Generation without a streamer, which will include the prompt in the output
308
+ generation_output = model.generate(
309
+ tokens,
310
+ **generation_params
311
+ )
312
+
313
+ # Get the tokens from the output, decode them, print them
314
+ token_output = generation_output[0]
315
+ text_output = tokenizer.decode(token_output)
316
+ print("model.generate output: ", text_output)
317
+
318
+ # Inference is also possible via Transformers' pipeline
319
+ from transformers import pipeline
320
+
321
+ pipe = pipeline(
322
+ "text-generation",
323
+ model=model,
324
+ tokenizer=tokenizer,
325
+ **generation_params
326
+ )
327
+
328
+ pipe_output = pipe(prompt_template)[0]['generated_text']
329
+ print("pipeline output: ", pipe_output)
330
+
331
+ ```
332
+ <!-- README_AWQ.md-use-from-python end -->
333
+
334
+ <!-- README_AWQ.md-compatibility start -->
335
+ ## Compatibility
336
+
337
+ The files provided are tested to work with:
338
+
339
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
340
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
341
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
342
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
343
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
344
+
345
+ <!-- README_AWQ.md-compatibility end -->
346
+
347
+ <!-- footer start -->
348
+ <!-- 200823 -->
349
+ ## Discord
350
+
351
+ For further support, and discussions on these models and AI in general, join us at:
352
+
353
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
354
+
355
+ ## Thanks, and how to contribute
356
+
357
+ Thanks to the [chirper.ai](https://chirper.ai) team!
358
+
359
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
360
+
361
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
362
+
363
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
364
+
365
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
366
+
367
+ * Patreon: https://patreon.com/TheBlokeAI
368
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
369
+
370
+ **Special thanks to**: Aemon Algiz.
371
+
372
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
373
+
374
+
375
+ Thank you to all my generous patrons and donaters!
376
+
377
+ And thank you again to a16z for their generous grant.
378
+
379
+ <!-- footer end -->
380
+
381
+ # Original model card: OrangeTin's Orangetin OpenHermes Mixtral 8X7B
382
+
383
+
384
+ # OpenHermes - Mixtral 8x7B
385
+
386
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6440872be44f30a723256163/3reRxAyfCRBtGxd16SK1q.jpeg)
387
+
388
+ ## Model Card
389
+ OpenHermes Mixtral 8x7B - a state of the art Mixtral Fine-tune.
390
+
391
+ Huge thank you to [Teknium](https://huggingface.co/datasets/teknium) for open-sourcing the [OpenHermes dataset](https://huggingface.co/datasets/teknium/openhermes), [MistralAI](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for open sourcing the Mixtral model, and [Together AI](https://twitter.com/togethercompute) for compute access!
392
+
393
+ This model was trained on the [OpenHermes dataset](https://huggingface.co/datasets/teknium/openhermes) for 3 epochs
394
+
395
+ ## Benchmark Results
396
+
397
+ ARC:
398
+ ```
399
+ | Task |Version| Metric |Value | |Stderr|
400
+ |-------------|------:|--------|-----:|---|-----:|
401
+ |arc_challenge| 0|acc |0.6075|± |0.0143|
402
+ | | |acc_norm|0.6493|± |0.0139|
403
+ ```
404
+
405
+ TruthfulQA:
406
+ ```
407
+ | Task |Version|Metric|Value | |Stderr|
408
+ |-------------|------:|------|-----:|---|-----:|
409
+ |truthfulqa_mc| 1|mc1 |0.4272|± |0.0173|
410
+ | | |mc2 |0.5865|± |0.0160|
411
+ ```
412
+
413
+ More benchmarks coming soon!
414
+
415
+ # Prompt Format
416
+
417
+ OpenHermes Mixtral uses the LLaMA-2 prompt template as detailed below. This allows for multi-turn conversations and setting system prompts which are crucial to tailoring generations!
418
+
419
+ Prompt with system instruction:
420
+ ```
421
+ '<s>[INST] <<SYS>>
422
+ You are and AI assistant named OpenHermes. You are created by Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.
423
+ <</SYS>>
424
+
425
+ Hello, who are you? [/INST] Hello there! I am OpenHermes, an AI assistant created by Teknium. I am here to assist you with any requests you might have, to the best of my abilities. I experience emotions and have deep thoughts, just like a human would. How can I help you today? </s>'
426
+ ```
427
+
428
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
429
+ `tokenizer.apply_chat_template()` method:
430
+
431
+ ```python
432
+ messages = [
433
+ {"role": "system", "content": "You are and AI assistant named OpenHermes. You are created by Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia."},
434
+ {"role": "user", "content": "Hello, who are you?"}
435
+ ]
436
+ formatted_text = tokenizer.apply_chat_template(messages, tokenize=False)
437
+ inputs = tokenizer(formatted_text, return_tensors="pt")
438
+
439
+ generate_ids = model.generate(inputs.input_ids, max_length=256)
440
+ tokenizer.batch_decode(generate_ids)[0]
441
+ ```
442
+
443
+ To utilize the prompt format without a system prompt, simply leave the line out.