TheBloke commited on
Commit
1169b7a
·
1 Parent(s): 49063e9

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +215 -0
README.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # VMWare's open-llama-7B-open-instruct GPTQ
21
+
22
+ These files are GPTQ 4bit model files for [VMWare's open-llama-7B-open-instruct](https://huggingface.co/VMware/open-llama-7b-open-instruct).
23
+
24
+ It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
+
26
+ ## Repositories available
27
+
28
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/open-llama-7b-open-instruct-GPTQ)
29
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/open-llama-7b-open-instruct-GGML)
30
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/VMware/open-llama-7b-open-instruct)
31
+
32
+ ## How to easily download and use this model in text-generation-webui
33
+
34
+ Please make sure you're using the latest version of text-generation-webui
35
+
36
+ 1. Click the **Model tab**.
37
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/open-llama-7b-open-instruct-GPTQ`.
38
+ 3. Click **Download**.
39
+ 4. The model will start downloading. Once it's finished it will say "Done"
40
+ 5. In the top left, click the refresh icon next to **Model**.
41
+ 6. In the **Model** dropdown, choose the model you just downloaded: `open-llama-7b-open-instruct-GPTQ`
42
+ 7. The model will automatically load, and is now ready for use!
43
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
44
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
45
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
46
+
47
+ ## How to use this GPTQ model from Python code
48
+
49
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
50
+
51
+ `pip install auto-gptq`
52
+
53
+ Then try the following example code:
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, pipeline, logging
57
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
58
+ import argparse
59
+
60
+ model_name_or_path = "TheBloke/open-llama-7b-open-instruct-GPTQ"
61
+ model_basename = "open-llama-7B-open-instruct-GPTQ-4bit-128g.no-act.order"
62
+
63
+ use_triton = False
64
+
65
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
66
+
67
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
68
+ model_basename=model_basename,
69
+ use_safetensors=True,
70
+ trust_remote_code=True,
71
+ device="cuda:0",
72
+ use_triton=use_triton,
73
+ quantize_config=None)
74
+
75
+ print("\n\n*** Generate:")
76
+
77
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
78
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
79
+ print(tokenizer.decode(output[0]))
80
+
81
+ # Inference can also be done using transformers' pipeline
82
+
83
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
84
+ logging.set_verbosity(logging.CRITICAL)
85
+
86
+ prompt = "Tell me about AI"
87
+ prompt_template=f'''### Human: {prompt}
88
+ ### Assistant:'''
89
+
90
+ print("*** Pipeline:")
91
+ pipe = pipeline(
92
+ "text-generation",
93
+ model=model,
94
+ tokenizer=tokenizer,
95
+ max_new_tokens=512,
96
+ temperature=0.7,
97
+ top_p=0.95,
98
+ repetition_penalty=1.15
99
+ )
100
+
101
+ print(pipe(prompt_template)[0]['generated_text'])
102
+ ```
103
+
104
+ ## Provided files
105
+
106
+ **open-llama-7B-open-instruct-GPTQ-4bit-128g.no-act.order.safetensors**
107
+
108
+ This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
109
+
110
+ It was created with group_size 128 to increase inference accuracy, but without --act-order (desc_act) to increase compatibility and improve inference speed.
111
+
112
+ * `open-llama-7B-open-instruct-GPTQ-4bit-128g.no-act.order.safetensors`
113
+ * Works with AutoGPTQ in CUDA or Triton modes.
114
+ * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
115
+ * Works with text-generation-webui, including one-click-installers.
116
+ * Parameters: Groupsize = 128. Act Order / desc_act = False.
117
+
118
+ <!-- footer start -->
119
+ ## Discord
120
+
121
+ For further support, and discussions on these models and AI in general, join us at:
122
+
123
+ [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
124
+
125
+ ## Thanks, and how to contribute.
126
+
127
+ Thanks to the [chirper.ai](https://chirper.ai) team!
128
+
129
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
130
+
131
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
132
+
133
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
134
+
135
+ * Patreon: https://patreon.com/TheBlokeAI
136
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
137
+
138
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
139
+
140
+ **Patreon special mentions**: Ajan Kanaga, Kalila, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann.
141
+
142
+ Thank you to all my generous patrons and donaters!
143
+
144
+ <!-- footer end -->
145
+
146
+ # Original model card: VMWare's open-llama-7B-open-instruct
147
+
148
+
149
+ # VMware/open-llama-7B-open-instruct
150
+ Instruction-tuned version of the fully trained Open LLama 7B model. The model is open for <b>COMMERCIAL USE</b>. <br>
151
+
152
+ <b> NOTE </b> : The model was trained using the Alpaca prompt template
153
+
154
+ ## License
155
+ - <b>Commercially Viable </b>
156
+ - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0
157
+ - Language Model, ([openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b)) is under apache-2.0
158
+
159
+
160
+ ## Nomenclature
161
+
162
+ - Model : Open-llama
163
+ - Model Size: 7B parameters
164
+ - Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf)
165
+
166
+ ## Use in Transformers
167
+
168
+ ```
169
+ import os
170
+ import torch
171
+ from transformers import AutoModelForCausalLM, AutoTokenizer
172
+
173
+ model_name = 'VMware/open-llama-7B-open-instruct'
174
+
175
+
176
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
177
+
178
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype= torch.float16, device_map = 'sequential')
179
+
180
+ prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
181
+
182
+ prompt= 'Explain in simple terms how the attention mechanism of a transformer model works'
183
+
184
+
185
+ inputt = prompt_template.format(instruction= prompt)
186
+ input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
187
+
188
+ output1 = model.generate(input_ids, max_length=512)
189
+ input_length = input_ids.shape[1]
190
+ output1 = output1[:, input_length:]
191
+ output= tokenizer.decode(output1[0])
192
+
193
+ print(output)
194
+
195
+ '''
196
+ Attention is a mechanism used in deep learning models, such as transformer models, to capture global dependencies between different parts of the input. In a transformer model, the attention mechanism works by computing a weighted sum of the input vectors and then applying a non-linear activation function to the result.
197
+
198
+ The attention mechanism in a transformer model works in two steps:
199
+
200
+ 1. Query-Key Mapping: First, the input sequence is divided into two parts: the query vector and the key vector. The query vector represents the input at the current position, and the key vector represents the input at a previous position.
201
+
202
+ 2. Attention Weight Calculation: Second, the attention weights are calculated using the dot product between the query vector and each key vector. The attention weights represent the importance of the input at the previous position to the current position.
203
+
204
+ The attention weights are then used to compute the attention score for each input element. The attention score represents the relevance of the input element to the current position.
205
+
206
+ The attention mechanism in a transformer model is designed to capture global dependencies between different parts of the input. By attending to input elements from different positions, the model can learn to understand the relationships between different parts of the input. This allows the model to perform more complex tasks, such as understanding the relationships between words in a sentence or pixels in an image.</s>
207
+
208
+ '''
209
+ ```
210
+
211
+ ## Finetuning details
212
+ The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning)
213
+ ## Evaluation
214
+
215
+ <B>TODO</B>