TheBloke commited on
Commit
a5e91d6
1 Parent(s): 05191db

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +449 -0
README.md ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NucleusAI/nucleus-22B-token-500B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: mit
7
+ model_creator: NucleusAI
8
+ model_name: Nucleus 22B Token 500B
9
+ model_type: llama
10
+ prompt_template: '{prompt}
11
+
12
+ '
13
+ quantized_by: TheBloke
14
+ ---
15
+ <!-- markdownlint-disable MD041 -->
16
+
17
+ <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
+ </div>
22
+ <div style="display: flex; justify-content: space-between; width: 100%;">
23
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
+ </div>
26
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
+ </div>
29
+ </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
+ <!-- header end -->
33
+
34
+ # Nucleus 22B Token 500B - GPTQ
35
+ - Model creator: [NucleusAI](https://huggingface.co/NucleusAI)
36
+ - Original model: [Nucleus 22B Token 500B](https://huggingface.co/NucleusAI/nucleus-22B-token-500B)
37
+
38
+ <!-- description start -->
39
+ # Description
40
+
41
+ This repo contains GPTQ model files for [NucleusAI's Nucleus 22B Token 500B](https://huggingface.co/NucleusAI/nucleus-22B-token-500B).
42
+
43
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
+
45
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
46
+
47
+ <!-- description end -->
48
+ <!-- repositories-available start -->
49
+ ## Repositories available
50
+
51
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/nucleus-22B-token-500B-AWQ)
52
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ)
53
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GGUF)
54
+ * [NucleusAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NucleusAI/nucleus-22B-token-500B)
55
+ <!-- repositories-available end -->
56
+
57
+ <!-- prompt-template start -->
58
+ ## Prompt template: None
59
+
60
+ ```
61
+ {prompt}
62
+
63
+ ```
64
+
65
+ <!-- prompt-template end -->
66
+
67
+
68
+
69
+ <!-- README_GPTQ.md-compatible clients start -->
70
+ ## Known compatible clients / servers
71
+
72
+ These GPTQ models are known to work in the following inference servers/webuis.
73
+
74
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
75
+ - [KoboldAI United](https://github.com/henk717/koboldai)
76
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
77
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
78
+
79
+ This may not be a complete list; if you know of others, please let me know!
80
+ <!-- README_GPTQ.md-compatible clients end -->
81
+
82
+ <!-- README_GPTQ.md-provided-files start -->
83
+ ## Provided files, and GPTQ parameters
84
+
85
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
86
+
87
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
88
+
89
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
90
+
91
+ <details>
92
+ <summary>Explanation of GPTQ parameters</summary>
93
+
94
+ - Bits: The bit size of the quantised model.
95
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
96
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
97
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
98
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
99
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
100
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
101
+
102
+ </details>
103
+
104
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
105
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
106
+ | [main](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 11.58 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
107
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 11.99 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
108
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 13.24 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
109
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 9.29 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
110
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 22.28 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
111
+ | [gptq-3bit-32g-actorder_True](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/gptq-3bit-32g-actorder_True) | 3 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 10.48 GB | No | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. |
112
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1) | 2048 | 22.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
113
+
114
+ <!-- README_GPTQ.md-provided-files end -->
115
+
116
+ <!-- README_GPTQ.md-download-from-branches start -->
117
+ ## How to download, including from branches
118
+
119
+ ### In text-generation-webui
120
+
121
+ To download from the `main` branch, enter `TheBloke/nucleus-22B-token-500B-GPTQ` in the "Download model" box.
122
+
123
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/nucleus-22B-token-500B-GPTQ:gptq-4bit-128g-actorder_True`
124
+
125
+ ### From the command line
126
+
127
+ I recommend using the `huggingface-hub` Python library:
128
+
129
+ ```shell
130
+ pip3 install huggingface-hub
131
+ ```
132
+
133
+ To download the `main` branch to a folder called `nucleus-22B-token-500B-GPTQ`:
134
+
135
+ ```shell
136
+ mkdir nucleus-22B-token-500B-GPTQ
137
+ huggingface-cli download TheBloke/nucleus-22B-token-500B-GPTQ --local-dir nucleus-22B-token-500B-GPTQ --local-dir-use-symlinks False
138
+ ```
139
+
140
+ To download from a different branch, add the `--revision` parameter:
141
+
142
+ ```shell
143
+ mkdir nucleus-22B-token-500B-GPTQ
144
+ huggingface-cli download TheBloke/nucleus-22B-token-500B-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir nucleus-22B-token-500B-GPTQ --local-dir-use-symlinks False
145
+ ```
146
+
147
+ <details>
148
+ <summary>More advanced huggingface-cli download usage</summary>
149
+
150
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
151
+
152
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
153
+
154
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
155
+
156
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
157
+
158
+ ```shell
159
+ pip3 install hf_transfer
160
+ ```
161
+
162
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
163
+
164
+ ```shell
165
+ mkdir nucleus-22B-token-500B-GPTQ
166
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/nucleus-22B-token-500B-GPTQ --local-dir nucleus-22B-token-500B-GPTQ --local-dir-use-symlinks False
167
+ ```
168
+
169
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
170
+ </details>
171
+
172
+ ### With `git` (**not** recommended)
173
+
174
+ To clone a specific branch with `git`, use a command like this:
175
+
176
+ ```shell
177
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/nucleus-22B-token-500B-GPTQ
178
+ ```
179
+
180
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
181
+
182
+ <!-- README_GPTQ.md-download-from-branches end -->
183
+ <!-- README_GPTQ.md-text-generation-webui start -->
184
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
185
+
186
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
187
+
188
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
189
+
190
+ 1. Click the **Model tab**.
191
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/nucleus-22B-token-500B-GPTQ`.
192
+
193
+ - To download from a specific branch, enter for example `TheBloke/nucleus-22B-token-500B-GPTQ:gptq-4bit-128g-actorder_True`
194
+ - see Provided Files above for the list of branches for each option.
195
+
196
+ 3. Click **Download**.
197
+ 4. The model will start downloading. Once it's finished it will say "Done".
198
+ 5. In the top left, click the refresh icon next to **Model**.
199
+ 6. In the **Model** dropdown, choose the model you just downloaded: `nucleus-22B-token-500B-GPTQ`
200
+ 7. The model will automatically load, and is now ready for use!
201
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
202
+
203
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
204
+
205
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
206
+
207
+ <!-- README_GPTQ.md-text-generation-webui end -->
208
+
209
+ <!-- README_GPTQ.md-use-from-tgi start -->
210
+ ## Serving this model from Text Generation Inference (TGI)
211
+
212
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
213
+
214
+ Example Docker parameters:
215
+
216
+ ```shell
217
+ --model-id TheBloke/nucleus-22B-token-500B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
218
+ ```
219
+
220
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
221
+
222
+ ```shell
223
+ pip3 install huggingface-hub
224
+ ```
225
+
226
+ ```python
227
+ from huggingface_hub import InferenceClient
228
+
229
+ endpoint_url = "https://your-endpoint-url-here"
230
+
231
+ prompt = "Tell me about AI"
232
+ prompt_template=f'''{prompt}
233
+ '''
234
+
235
+ client = InferenceClient(endpoint_url)
236
+ response = client.text_generation(prompt,
237
+ max_new_tokens=128,
238
+ do_sample=True,
239
+ temperature=0.7,
240
+ top_p=0.95,
241
+ top_k=40,
242
+ repetition_penalty=1.1)
243
+
244
+ print(f"Model output: {response}")
245
+ ```
246
+ <!-- README_GPTQ.md-use-from-tgi end -->
247
+ <!-- README_GPTQ.md-use-from-python start -->
248
+ ## Python code example: inference from this GPTQ model
249
+
250
+ ### Install the necessary packages
251
+
252
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
253
+
254
+ ```shell
255
+ pip3 install --upgrade transformers optimum
256
+ # If using PyTorch 2.1 + CUDA 12.x:
257
+ pip3 install --upgrade auto-gptq
258
+ # or, if using PyTorch 2.1 + CUDA 11.x:
259
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
260
+ ```
261
+
262
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
263
+
264
+ ```shell
265
+ pip3 uninstall -y auto-gptq
266
+ git clone https://github.com/PanQiWei/AutoGPTQ
267
+ cd AutoGPTQ
268
+ git checkout v0.5.1
269
+ pip3 install .
270
+ ```
271
+
272
+ ### Example Python code
273
+
274
+ ```python
275
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
276
+
277
+ model_name_or_path = "TheBloke/nucleus-22B-token-500B-GPTQ"
278
+ # To use a different branch, change revision
279
+ # For example: revision="gptq-4bit-128g-actorder_True"
280
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
281
+ device_map="auto",
282
+ trust_remote_code=False,
283
+ revision="main")
284
+
285
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
286
+
287
+ prompt = "Tell me about AI"
288
+ prompt_template=f'''{prompt}
289
+ '''
290
+
291
+ print("\n\n*** Generate:")
292
+
293
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
294
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
295
+ print(tokenizer.decode(output[0]))
296
+
297
+ # Inference can also be done using transformers' pipeline
298
+
299
+ print("*** Pipeline:")
300
+ pipe = pipeline(
301
+ "text-generation",
302
+ model=model,
303
+ tokenizer=tokenizer,
304
+ max_new_tokens=512,
305
+ do_sample=True,
306
+ temperature=0.7,
307
+ top_p=0.95,
308
+ top_k=40,
309
+ repetition_penalty=1.1
310
+ )
311
+
312
+ print(pipe(prompt_template)[0]['generated_text'])
313
+ ```
314
+ <!-- README_GPTQ.md-use-from-python end -->
315
+
316
+ <!-- README_GPTQ.md-compatibility start -->
317
+ ## Compatibility
318
+
319
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
320
+
321
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
322
+
323
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
324
+ <!-- README_GPTQ.md-compatibility end -->
325
+
326
+ <!-- footer start -->
327
+ <!-- 200823 -->
328
+ ## Discord
329
+
330
+ For further support, and discussions on these models and AI in general, join us at:
331
+
332
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
333
+
334
+ ## Thanks, and how to contribute
335
+
336
+ Thanks to the [chirper.ai](https://chirper.ai) team!
337
+
338
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
339
+
340
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
341
+
342
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
343
+
344
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
345
+
346
+ * Patreon: https://patreon.com/TheBlokeAI
347
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
348
+
349
+ **Special thanks to**: Aemon Algiz.
350
+
351
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
352
+
353
+
354
+ Thank you to all my generous patrons and donaters!
355
+
356
+ And thank you again to a16z for their generous grant.
357
+
358
+ <!-- footer end -->
359
+
360
+ # Original model card: NucleusAI's Nucleus 22B Token 500B
361
+
362
+
363
+ # 🚀 Nucleus-22B-token-500B
364
+
365
+ **Nucleus-22B-token-500B is a 22B parameters causal decoder-only model built by Nucleus.AI and trained on 500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) along with curated corpora. It is made available under the MIT license.**
366
+
367
+ *1T-token model coming soon* 😊.
368
+
369
+
370
+ ## What about Nucleus-22B-token-500B?
371
+
372
+ * **It performs well compared to similar-size open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
373
+ * **It is made available under an MIT license**.
374
+ * **It is trained by a small team of four passionate for Open Source**
375
+
376
+ ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.**
377
+
378
+ # Model Card for Nucleus-22B-token-500B
379
+
380
+ ## Model Details
381
+
382
+ ### Model Description
383
+
384
+ - **Developed by:** NucleusAI;
385
+ - **Model type:** Causal decoder-only;
386
+ - **Language(s) (NLP):** English;
387
+ - **License:** MIT.
388
+
389
+ ### Model Source
390
+
391
+ - **Paper:** *coming soon*.
392
+
393
+ ## Uses
394
+
395
+ ### Direct Use
396
+
397
+ Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
398
+
399
+ ### Out-of-Scope Use
400
+
401
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
402
+
403
+ ## Bias, Risks, and Limitations
404
+
405
+ Nucleus-22B-token-500B is trained on English data only, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
406
+
407
+ ### Recommendations
408
+
409
+ We recommend users of Nucleus-22B-token-500B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
410
+
411
+ ## How to Get Started with the Mode
412
+
413
+
414
+ ## Training Details
415
+
416
+ ### Training Data
417
+
418
+ Nucleus-22B-token-500B was trained on 500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), along with other corpora.
419
+
420
+ | **Data source** | **Fraction** | **Tokens** | **Sources** |
421
+ |--------------------|--------------|------------|-----------------------------------|
422
+ | [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 75% | 200B | massive web crawl |
423
+ | Books | 7% | 21B | |
424
+ | Code | 7% | 21B | Big Code, CodeNet |
425
+ | Technical | 6% | 19B | arXiv |
426
+ | Math | 5% | 17B | Mathematica, Khan Academy |
427
+
428
+
429
+ The data was tokenized with the tokenizer similar to Llama-[7B](https://huggingface.co/meta-llama/Llama-2-7b).
430
+
431
+ ### Training Procedure
432
+
433
+ Nucleus-22B-token-500B was trained on 256 A100 80GB GPUs, using a FSDP
434
+
435
+ #### Training Hyperparameters
436
+
437
+ | **Hyperparameter** | **Value** | **Comment** |
438
+ |--------------------|------------|-------------------------------------------|
439
+ | Precision | `bfloat16` | |
440
+ | Optimizer | AdamW | |
441
+ | Learning rate | 2e-4 | 8B tokens warm-up, cosine decay to 1.e-5 |
442
+ | Weight decay | 1e-1 | |
443
+ | Batch size | 2048 | constant |
444
+ | Context length | 2048 | constant |
445
+
446
+
447
+ #### Speeds, Sizes, Times
448
+
449
+ Training happened in early August 2023 and took about two weeks.