TheBloke commited on
Commit
6a86271
·
1 Parent(s): 8043c14

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +252 -0
README.md ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # Ausboss' Llama 30B SuperCOT GPTQ
21
+
22
+ These files are GPTQ 4bit model files for [Ausboss' Llama 30B SuperCOT](https://huggingface.co/ausboss/llama-30b-supercot) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test).
23
+
24
+ It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
25
+
26
+ **This is an experimental new GPTQ which offers up to 8K context size**
27
+
28
+ The increased context is tested to work with [ExLlama](https://github.com/turboderp/exllama), via the latest release of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
29
+
30
+ It has also been tested from Python code using AutoGPTQ, and `trust_remote_code=True`.
31
+
32
+ Code credits:
33
+ - Original concept and code for increasing context length: [kaiokendev](https://huggingface.co/kaiokendev)
34
+ - Updated Llama modelling code that includes this automatically via trust_remote_code: [emozilla](https://huggingface.co/emozilla).
35
+
36
+ Please read carefully below to see how to use it.
37
+
38
+ **NOTE**: Using the full 8K context on a 30B model will exceed 24GB VRAM.
39
+
40
+ GGML versions are not yet provided, as there is not yet support for SuperHOT in llama.cpp. This is being investigated and will hopefully come soon.
41
+
42
+ ## Repositories available
43
+
44
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/llama-30b-supercot-SuperHOT-8K-GPTQ)
45
+ * [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/llama-30b-supercot-SuperHOT-8K-fp16)
46
+ * [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ausboss/llama-30b-supercot)
47
+
48
+ ## How to easily download and use this model in text-generation-webui with ExLlama
49
+
50
+ Please make sure you're using the latest version of text-generation-webui
51
+
52
+ 1. Click the **Model tab**.
53
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/llama-30b-supercot-SuperHOT-8K-GPTQ`.
54
+ 3. Click **Download**.
55
+ 4. The model will start downloading. Once it's finished it will say "Done"
56
+ 5. Untick **Autoload the model**
57
+ 6. In the top left, click the refresh icon next to **Model**.
58
+ 7. In the **Model** dropdown, choose the model you just downloaded: `llama-30b-supercot-SuperHOT-8K-GPTQ`
59
+ 8. To use the increased context, set the **Loader** to **ExLlama**, set **max_seq_len** to 8192 or 4096, and set **compress_pos_emb** to **4** for 8192 context, or to **2** for 4096 context.
60
+ 9. Now click **Save Settings** followed by **Reload**
61
+ 10. The model will automatically load, and is now ready for use!
62
+ 11. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
63
+
64
+ ## How to use this GPTQ model from Python code with AutoGPTQ
65
+
66
+ First make sure you have AutoGPTQ and Einops installed:
67
+
68
+ ```
69
+ pip3 install einops auto-gptq
70
+ ```
71
+
72
+ Then run the following code. Note that in order to get this to work, `config.json` has been hardcoded to a sequence length of 8192.
73
+
74
+ If you want to try 4096 instead to reduce VRAM usage, please manually edit `config.json` to set `max_position_embeddings` to the value you want.
75
+
76
+ ```python
77
+ from transformers import AutoTokenizer, pipeline, logging
78
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
79
+ import argparse
80
+
81
+ model_name_or_path = "TheBloke/llama-30b-supercot-SuperHOT-8K-GPTQ"
82
+ model_basename = "llama-30b-supercot-superhot-8k-GPTQ-4bit--1g.act.order"
83
+
84
+ use_triton = False
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
87
+
88
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
89
+ model_basename=model_basename,
90
+ use_safetensors=True,
91
+ trust_remote_code=True,
92
+ device_map='auto',
93
+ use_triton=use_triton,
94
+ quantize_config=None)
95
+
96
+ model.seqlen = 8192
97
+
98
+ # Note: check the prompt template is correct for this model.
99
+ prompt = "Tell me about AI"
100
+ prompt_template=f'''USER: {prompt}
101
+ ASSISTANT:'''
102
+
103
+ print("\n\n*** Generate:")
104
+
105
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
106
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
107
+ print(tokenizer.decode(output[0]))
108
+
109
+ # Inference can also be done using transformers' pipeline
110
+
111
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
112
+ logging.set_verbosity(logging.CRITICAL)
113
+
114
+ print("*** Pipeline:")
115
+ pipe = pipeline(
116
+ "text-generation",
117
+ model=model,
118
+ tokenizer=tokenizer,
119
+ max_new_tokens=512,
120
+ temperature=0.7,
121
+ top_p=0.95,
122
+ repetition_penalty=1.15
123
+ )
124
+
125
+ print(pipe(prompt_template)[0]['generated_text'])
126
+ ```
127
+
128
+ ## Using other UIs: monkey patch
129
+
130
+ Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev.
131
+
132
+ It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest.
133
+
134
+ ## Provided files
135
+
136
+ **llama-30b-supercot-superhot-8k-GPTQ-4bit--1g.act.order.safetensors**
137
+
138
+ This will work with AutoGPTQ, ExLlama, and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
139
+
140
+ It was created without group_size to lower VRAM requirements, and with --act-order (desc_act) to boost inference accuracy as much as possible.
141
+
142
+ * `llama-30b-supercot-superhot-8k-GPTQ-4bit--1g.act.order.safetensors`
143
+ * Works for use with ExLlama with increased context (4096 or 8192)
144
+ * Works with AutoGPTQ in Python code, including with increased context, if `trust_remote_code=True` is set.
145
+ * Should work with GPTQ-for-LLaMa in CUDA mode, but unknown if increased context works - TBC. May have issues with GPTQ-for-LLaMa Triton mode.
146
+ * Works with text-generation-webui, including one-click-installers.
147
+ * Parameters: Groupsize = -1. Act Order / desc_act = True.
148
+
149
+ <!-- footer start -->
150
+ ## Discord
151
+
152
+ For further support, and discussions on these models and AI in general, join us at:
153
+
154
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
155
+
156
+ ## Thanks, and how to contribute.
157
+
158
+ Thanks to the [chirper.ai](https://chirper.ai) team!
159
+
160
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
161
+
162
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
163
+
164
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
165
+
166
+ * Patreon: https://patreon.com/TheBlokeAI
167
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
168
+
169
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
170
+
171
+ **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
172
+
173
+ Thank you to all my generous patrons and donaters!
174
+
175
+ <!-- footer end -->
176
+
177
+ # Original model card: Kaio Ken's SuperHOT 8K
178
+
179
+ ### SuperHOT Prototype 2 w/ 8K Context
180
+
181
+ This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
182
+ Tests have shown that the model does indeed leverage the extended context at 8K.
183
+
184
+ You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
185
+
186
+ #### Looking for Merged & Quantized Models?
187
+ - 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
188
+ - 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
189
+
190
+
191
+ #### Training Details
192
+ I trained the LoRA with the following configuration:
193
+ - 1200 samples (~400 samples over 2048 sequence length)
194
+ - learning rate of 3e-4
195
+ - 3 epochs
196
+ - The exported modules are:
197
+ - q_proj
198
+ - k_proj
199
+ - v_proj
200
+ - o_proj
201
+ - no bias
202
+ - Rank = 4
203
+ - Alpha = 8
204
+ - no dropout
205
+ - weight decay of 0.1
206
+ - AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
207
+ - Trained on 4-bit base model
208
+
209
+ # Original model card: Ausboss' Llama 30B SuperCOT
210
+
211
+ Merge of [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) + [kaiokendev/SuperCOT-LoRA](https://huggingface.co/kaiokendev/SuperCOT-LoRA/edit/main/README.md)
212
+
213
+ Supercot was trained to work with langchain prompting.
214
+
215
+
216
+ Load up locally in my custom LLM notebook that uses the Oobabooga modules to load up models: https://github.com/ausboss/Local-LLM-Langchain
217
+
218
+ Then you can add cells from of these other notebooks for testing: https://github.com/gkamradt/langchain-tutorials
219
+
220
+
221
+
222
+ # From Koikendev Lora page
223
+
224
+ ### Compatibility
225
+ This LoRA is compatible with any 7B, 13B or 30B 4-bit quantized LLaMa model, including ggml quantized converted bins
226
+
227
+ ### Prompting
228
+ You should prompt the LoRA the same way you would prompt Alpaca or Alpacino:
229
+
230
+ ```
231
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
232
+
233
+ ### Instruction:
234
+ <instruction>
235
+
236
+ ### Input:
237
+ <any additional context. Remove this if it's not neccesary>
238
+
239
+ ### Response:
240
+ <make sure to leave a single new-line here for optimal results>
241
+ ```
242
+
243
+ Remember that with lower parameter sizes, the structure of the prompt becomes more important. The same prompt worded differently can give wildly different answers. Consider using the following suggestion suffixes to improve output quality:
244
+
245
+ - "Think through this step by step"
246
+ - "Let's think about this logically"
247
+ - "Explain your reasoning"
248
+ - "Provide details to support your answer"
249
+ - "Compare and contrast your answer with alternatives"
250
+
251
+ ### Coming Soon
252
+ - Tweet fix for 13B and 7B - lower model sizes seem to be extremely sensitive to hashtags at the end of training data responses, especially at longer cutoffs