Text Generation
Transformers
GGUF
English
German
llama
TheBloke commited on
Commit
9e0c0d3
1 Parent(s): 58c0be0

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +423 -0
README.md ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: LeoLM/leo-hessianai-70b
3
+ datasets:
4
+ - oscar-corpus/OSCAR-2301
5
+ - wikipedia
6
+ - bjoernp/tagesschau-2018-2023
7
+ inference: false
8
+ language:
9
+ - en
10
+ - de
11
+ library_name: transformers
12
+ license: llama2
13
+ model_creator: LAION LeoLM
14
+ model_name: Leo Hessianai 70B
15
+ model_type: llama
16
+ pipeline_tag: text-generation
17
+ prompt_template: '<|im_start|>system
18
+
19
+ {system_message}<|im_end|>
20
+
21
+ <|im_start|>user
22
+
23
+ {prompt}<|im_end|>
24
+
25
+ <|im_start|>assistant
26
+
27
+ '
28
+ quantized_by: TheBloke
29
+ ---
30
+ <!-- markdownlint-disable MD041 -->
31
+
32
+ <!-- header start -->
33
+ <!-- 200823 -->
34
+ <div style="width: auto; margin-left: auto; margin-right: auto">
35
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
36
+ </div>
37
+ <div style="display: flex; justify-content: space-between; width: 100%;">
38
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
40
+ </div>
41
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
42
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
43
+ </div>
44
+ </div>
45
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
46
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
47
+ <!-- header end -->
48
+
49
+ # Leo Hessianai 70B - GGUF
50
+ - Model creator: [LAION LeoLM](https://huggingface.co/LeoLM)
51
+ - Original model: [Leo Hessianai 70B](https://huggingface.co/LeoLM/leo-hessianai-70b)
52
+
53
+ <!-- description start -->
54
+ ## Description
55
+
56
+ This repo contains GGUF format model files for [LAION LeoLM's Leo Hessianai 70B](https://huggingface.co/LeoLM/leo-hessianai-70b).
57
+
58
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
59
+
60
+ <!-- description end -->
61
+ <!-- README_GGUF.md-about-gguf start -->
62
+ ### About GGUF
63
+
64
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
65
+
66
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
67
+
68
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
69
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
70
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
71
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
72
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
73
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
74
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
75
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
76
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
77
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
78
+
79
+ <!-- README_GGUF.md-about-gguf end -->
80
+ <!-- repositories-available start -->
81
+ ## Repositories available
82
+
83
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/leo-hessianai-70B-AWQ)
84
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/leo-hessianai-70B-GPTQ)
85
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF)
86
+ * [LAION LeoLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/LeoLM/leo-hessianai-70b)
87
+ <!-- repositories-available end -->
88
+
89
+ <!-- prompt-template start -->
90
+ ## Prompt template: ChatML
91
+
92
+ ```
93
+ <|im_start|>system
94
+ {system_message}<|im_end|>
95
+ <|im_start|>user
96
+ {prompt}<|im_end|>
97
+ <|im_start|>assistant
98
+
99
+ ```
100
+
101
+ <!-- prompt-template end -->
102
+
103
+
104
+ <!-- compatibility_gguf start -->
105
+ ## Compatibility
106
+
107
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
108
+
109
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
110
+
111
+ ## Explanation of quantisation methods
112
+
113
+ <details>
114
+ <summary>Click to see details</summary>
115
+
116
+ The new methods available are:
117
+
118
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
119
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
120
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
121
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
122
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
123
+
124
+ Refer to the Provided Files table below to see what files use which methods, and how.
125
+ </details>
126
+ <!-- compatibility_gguf end -->
127
+
128
+ <!-- README_GGUF.md-provided-files start -->
129
+ ## Provided files
130
+
131
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
132
+ | ---- | ---- | ---- | ---- | ---- | ----- |
133
+ | [leo-hessianai-70b.Q2_K.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
134
+ | [leo-hessianai-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
135
+ | [leo-hessianai-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
136
+ | [leo-hessianai-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
137
+ | [leo-hessianai-70b.Q4_0.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
138
+ | [leo-hessianai-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
139
+ | [leo-hessianai-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
140
+ | [leo-hessianai-70b.Q5_0.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
141
+ | [leo-hessianai-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
142
+ | [leo-hessianai-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/leo-hessianai-70B-GGUF/blob/main/leo-hessianai-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
143
+ | leo-hessianai-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
144
+ | leo-hessianai-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
145
+
146
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
147
+
148
+ ### Q6_K and Q8_0 files are split and require joining
149
+
150
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
151
+
152
+ <details>
153
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
154
+
155
+ ### q6_K
156
+ Please download:
157
+ * `leo-hessianai-70b.Q6_K.gguf-split-a`
158
+ * `leo-hessianai-70b.Q6_K.gguf-split-b`
159
+
160
+ ### q8_0
161
+ Please download:
162
+ * `leo-hessianai-70b.Q8_0.gguf-split-a`
163
+ * `leo-hessianai-70b.Q8_0.gguf-split-b`
164
+
165
+ To join the files, do the following:
166
+
167
+ Linux and macOS:
168
+ ```
169
+ cat leo-hessianai-70b.Q6_K.gguf-split-* > leo-hessianai-70b.Q6_K.gguf && rm leo-hessianai-70b.Q6_K.gguf-split-*
170
+ cat leo-hessianai-70b.Q8_0.gguf-split-* > leo-hessianai-70b.Q8_0.gguf && rm leo-hessianai-70b.Q8_0.gguf-split-*
171
+ ```
172
+ Windows command line:
173
+ ```
174
+ COPY /B leo-hessianai-70b.Q6_K.gguf-split-a + leo-hessianai-70b.Q6_K.gguf-split-b leo-hessianai-70b.Q6_K.gguf
175
+ del leo-hessianai-70b.Q6_K.gguf-split-a leo-hessianai-70b.Q6_K.gguf-split-b
176
+
177
+ COPY /B leo-hessianai-70b.Q8_0.gguf-split-a + leo-hessianai-70b.Q8_0.gguf-split-b leo-hessianai-70b.Q8_0.gguf
178
+ del leo-hessianai-70b.Q8_0.gguf-split-a leo-hessianai-70b.Q8_0.gguf-split-b
179
+ ```
180
+
181
+ </details>
182
+ <!-- README_GGUF.md-provided-files end -->
183
+
184
+ <!-- README_GGUF.md-how-to-download start -->
185
+ ## How to download GGUF files
186
+
187
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
188
+
189
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
190
+
191
+ * LM Studio
192
+ * LoLLMS Web UI
193
+ * Faraday.dev
194
+
195
+ ### In `text-generation-webui`
196
+
197
+ Under Download Model, you can enter the model repo: TheBloke/leo-hessianai-70B-GGUF and below it, a specific filename to download, such as: leo-hessianai-70b.Q4_K_M.gguf.
198
+
199
+ Then click Download.
200
+
201
+ ### On the command line, including multiple files at once
202
+
203
+ I recommend using the `huggingface-hub` Python library:
204
+
205
+ ```shell
206
+ pip3 install huggingface-hub
207
+ ```
208
+
209
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
210
+
211
+ ```shell
212
+ huggingface-cli download TheBloke/leo-hessianai-70B-GGUF leo-hessianai-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
213
+ ```
214
+
215
+ <details>
216
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
217
+
218
+ You can also download multiple files at once with a pattern:
219
+
220
+ ```shell
221
+ huggingface-cli download TheBloke/leo-hessianai-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
222
+ ```
223
+
224
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
225
+
226
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
227
+
228
+ ```shell
229
+ pip3 install hf_transfer
230
+ ```
231
+
232
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
233
+
234
+ ```shell
235
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/leo-hessianai-70B-GGUF leo-hessianai-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
236
+ ```
237
+
238
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
239
+ </details>
240
+ <!-- README_GGUF.md-how-to-download end -->
241
+
242
+ <!-- README_GGUF.md-how-to-run start -->
243
+ ## Example `llama.cpp` command
244
+
245
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
246
+
247
+ ```shell
248
+ ./main -ngl 35 -m leo-hessianai-70b.Q4_K_M.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
249
+ ```
250
+
251
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
252
+
253
+ Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
254
+
255
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
256
+
257
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
258
+
259
+ ## How to run in `text-generation-webui`
260
+
261
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
262
+
263
+ ## How to run from Python code
264
+
265
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
266
+
267
+ ### How to load this model in Python code, using llama-cpp-python
268
+
269
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
270
+
271
+ #### First install the package
272
+
273
+ Run one of the following commands, according to your system:
274
+
275
+ ```shell
276
+ # Base ctransformers with no GPU acceleration
277
+ pip install llama-cpp-python
278
+ # With NVidia CUDA acceleration
279
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
280
+ # Or with OpenBLAS acceleration
281
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
282
+ # Or with CLBLast acceleration
283
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
284
+ # Or with AMD ROCm GPU acceleration (Linux only)
285
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
286
+ # Or with Metal GPU acceleration for macOS systems only
287
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
288
+
289
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
290
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
291
+ pip install llama-cpp-python
292
+ ```
293
+
294
+ #### Simple llama-cpp-python example code
295
+
296
+ ```python
297
+ from llama_cpp import Llama
298
+
299
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
300
+ llm = Llama(
301
+ model_path="./leo-hessianai-70b.Q4_K_M.gguf", # Download the model file first
302
+ n_ctx=8192, # The max sequence length to use - note that longer sequence lengths require much more resources
303
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
304
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
305
+ )
306
+
307
+ # Simple inference example
308
+ output = llm(
309
+ "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant", # Prompt
310
+ max_tokens=512, # Generate up to 512 tokens
311
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
312
+ echo=True # Whether to echo the prompt
313
+ )
314
+
315
+ # Chat Completion API
316
+
317
+ llm = Llama(model_path="./leo-hessianai-70b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
318
+ llm.create_chat_completion(
319
+ messages = [
320
+ {"role": "system", "content": "You are a story writing assistant."},
321
+ {
322
+ "role": "user",
323
+ "content": "Write a story about llamas."
324
+ }
325
+ ]
326
+ )
327
+ ```
328
+
329
+ ## How to use with LangChain
330
+
331
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
332
+
333
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
334
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
335
+
336
+ <!-- README_GGUF.md-how-to-run end -->
337
+
338
+ <!-- footer start -->
339
+ <!-- 200823 -->
340
+ ## Discord
341
+
342
+ For further support, and discussions on these models and AI in general, join us at:
343
+
344
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
345
+
346
+ ## Thanks, and how to contribute
347
+
348
+ Thanks to the [chirper.ai](https://chirper.ai) team!
349
+
350
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
351
+
352
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
353
+
354
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
355
+
356
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
357
+
358
+ * Patreon: https://patreon.com/TheBlokeAI
359
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
360
+
361
+ **Special thanks to**: Aemon Algiz.
362
+
363
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
364
+
365
+
366
+ Thank you to all my generous patrons and donaters!
367
+
368
+ And thank you again to a16z for their generous grant.
369
+
370
+ <!-- footer end -->
371
+
372
+ <!-- original-model-card start -->
373
+ # Original model card: LAION LeoLM's Leo Hessianai 70B
374
+
375
+ # LAION LeoLM 70b: **L**inguistically **E**nhanced **O**pen **L**anguage **M**odel
376
+ Meet LeoLM, the first open and commercially available German Foundation Language Model built on Llama-2.
377
+ Our models extend Llama-2's capabilities into German through continued pretraining on a large corpus of German-language and mostly locality specific text.
378
+ Thanks to a compute grant at HessianAI's new supercomputer **42**, we release a series foundation models trained with 8k context length
379
+ under the [Llama-2 community license](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt). Now, we're finally releasing the
380
+ much anticipated `leo-hessianai-70b`, the largest model of this series based on `Llama-2-70b`.
381
+ With this release, we hope to bring a new wave of opportunities to German open-source and commercial LLM research and accelerate adoption.
382
+ Read our [blog post](https://laion.ai/blog/leo-lm/) or our paper (preprint coming soon) for more details!
383
+
384
+ *A project by Björn Plüster and Christoph Schuhmann in collaboration with LAION and HessianAI.*
385
+
386
+
387
+ ## Model Details
388
+ - **Finetuned from:** [meta-llama/Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf)
389
+ - **Model type:** Causal decoder-only transformer language model
390
+ - **Language:** English and German
391
+ - **License:** [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://huggingface.co/meta-llama/Llama-2-70b/raw/main/LICENSE.txt)
392
+ - **Contact:** [LAION Discord](https://discord.com/invite/eq3cAMZtCC) or [Björn Plüster](mailto:[email protected])
393
+
394
+
395
+ ## Use in 🤗Transformers
396
+ First install direct dependencies:
397
+ ```
398
+ pip install transformers torch
399
+ ```
400
+
401
+ Then load the model in transformers. Note that this requires lots of VRAM and most-likely multiple devices. Use `load_in_8bit=True` or `load_in_4bit=True`
402
+ to save some memory by using a quantized version. For more quantized versions, check out our models at TheBloke's page: (coming soon!)
403
+ ```python
404
+ from transformers import AutoModelForCausalLM, AutoTokenizer
405
+ import torch
406
+
407
+ model = AutoModelForCausalLM.from_pretrained(
408
+ model="LeoLM/leo-hessianai-70b",
409
+ device_map="auto",
410
+ torch_dtype=torch.bfloat16,
411
+ use_flash_attention_2=False # Set to true to use FA2. Requires `pip install flash-attn`
412
+ )
413
+ ```
414
+
415
+ ## Training parameters
416
+ ![training_parameters](imgs/hyperparams.png "Training Hyperparameters")
417
+
418
+
419
+ ## Benchmarks
420
+ ![benchmarks](imgs/benchmarks.png "Benchmark Scores")
421
+ ![benchmarks](imgs/translation_scores.png "Translation Benchmark Scores")
422
+
423
+ <!-- original-model-card end -->