Text Generation
Transformers
GGUF
English
mistral
TheBloke commited on
Commit
2f71585
1 Parent(s): 3e7019f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +453 -0
README.md ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openaccess-ai-collective/jackalope-7b
3
+ datasets:
4
+ - Open-Orca/OpenOrca
5
+ - LDJnr/LessWrong-Amplify-Instruct
6
+ - LDJnr/Pure-Dove
7
+ - LDJnr/Verified-Camel
8
+ - PygmalionAI/PIPPA
9
+ - meta-math/MetaMathQA
10
+ - riddle_sense
11
+ inference: false
12
+ language:
13
+ - en
14
+ library_name: transformers
15
+ license: apache-2.0
16
+ model_creator: Open Access AI Collective
17
+ model_name: Jackalope 7B
18
+ model_type: mistral
19
+ pipeline_tag: text-generation
20
+ prompt_template: '<|im_start|>system
21
+
22
+ {system_message}<|im_end|>
23
+
24
+ <|im_start|>user
25
+
26
+ {prompt}<|im_end|>
27
+
28
+ <|im_start|>assistant
29
+
30
+ '
31
+ quantized_by: TheBloke
32
+ ---
33
+
34
+ <!-- header start -->
35
+ <!-- 200823 -->
36
+ <div style="width: auto; margin-left: auto; margin-right: auto">
37
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
38
+ </div>
39
+ <div style="display: flex; justify-content: space-between; width: 100%;">
40
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
42
+ </div>
43
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
45
+ </div>
46
+ </div>
47
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
48
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
49
+ <!-- header end -->
50
+
51
+ # Jackalope 7B - GGUF
52
+ - Model creator: [Open Access AI Collective](https://huggingface.co/openaccess-ai-collective)
53
+ - Original model: [Jackalope 7B](https://huggingface.co/openaccess-ai-collective/jackalope-7b)
54
+
55
+ <!-- description start -->
56
+ ## Description
57
+
58
+ This repo contains GGUF format model files for [Open Access AI Collective's Jackalope 7B](https://huggingface.co/openaccess-ai-collective/jackalope-7b).
59
+
60
+ <!-- description end -->
61
+ <!-- README_GGUF.md-about-gguf start -->
62
+ ### About GGUF
63
+
64
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
65
+
66
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
67
+
68
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
69
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
70
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
71
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
72
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
73
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
74
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
75
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
76
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
77
+
78
+ <!-- README_GGUF.md-about-gguf end -->
79
+ <!-- repositories-available start -->
80
+ ## Repositories available
81
+
82
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/jackalope-7B-AWQ)
83
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/jackalope-7B-GPTQ)
84
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/jackalope-7B-GGUF)
85
+ * [Open Access AI Collective's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/openaccess-ai-collective/jackalope-7b)
86
+ <!-- repositories-available end -->
87
+
88
+ <!-- prompt-template start -->
89
+ ## Prompt template: ChatML
90
+
91
+ ```
92
+ <|im_start|>system
93
+ {system_message}<|im_end|>
94
+ <|im_start|>user
95
+ {prompt}<|im_end|>
96
+ <|im_start|>assistant
97
+
98
+ ```
99
+
100
+ <!-- prompt-template end -->
101
+
102
+
103
+ <!-- compatibility_gguf start -->
104
+ ## Compatibility
105
+
106
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
107
+
108
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
109
+
110
+ ## Explanation of quantisation methods
111
+ <details>
112
+ <summary>Click to see details</summary>
113
+
114
+ The new methods available are:
115
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
116
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
117
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
118
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
119
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
120
+
121
+ Refer to the Provided Files table below to see what files use which methods, and how.
122
+ </details>
123
+ <!-- compatibility_gguf end -->
124
+
125
+ <!-- README_GGUF.md-provided-files start -->
126
+ ## Provided files
127
+
128
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
129
+ | ---- | ---- | ---- | ---- | ---- | ----- |
130
+ | [jackalope-7b.Q2_K.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
131
+ | [jackalope-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
132
+ | [jackalope-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
133
+ | [jackalope-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
134
+ | [jackalope-7b.Q4_0.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
135
+ | [jackalope-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
136
+ | [jackalope-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
137
+ | [jackalope-7b.Q5_0.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
138
+ | [jackalope-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
139
+ | [jackalope-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
140
+ | [jackalope-7b.Q6_K.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
141
+ | [jackalope-7b.Q8_0.gguf](https://huggingface.co/TheBloke/jackalope-7B-GGUF/blob/main/jackalope-7b.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
142
+
143
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
144
+
145
+
146
+
147
+ <!-- README_GGUF.md-provided-files end -->
148
+
149
+ <!-- README_GGUF.md-how-to-download start -->
150
+ ## How to download GGUF files
151
+
152
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
153
+
154
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
155
+ - LM Studio
156
+ - LoLLMS Web UI
157
+ - Faraday.dev
158
+
159
+ ### In `text-generation-webui`
160
+
161
+ Under Download Model, you can enter the model repo: TheBloke/jackalope-7B-GGUF and below it, a specific filename to download, such as: jackalope-7b.Q4_K_M.gguf.
162
+
163
+ Then click Download.
164
+
165
+ ### On the command line, including multiple files at once
166
+
167
+ I recommend using the `huggingface-hub` Python library:
168
+
169
+ ```shell
170
+ pip3 install huggingface-hub
171
+ ```
172
+
173
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
174
+
175
+ ```shell
176
+ huggingface-cli download TheBloke/jackalope-7B-GGUF jackalope-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
177
+ ```
178
+
179
+ <details>
180
+ <summary>More advanced huggingface-cli download usage</summary>
181
+
182
+ You can also download multiple files at once with a pattern:
183
+
184
+ ```shell
185
+ huggingface-cli download TheBloke/jackalope-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
186
+ ```
187
+
188
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
189
+
190
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
191
+
192
+ ```shell
193
+ pip3 install hf_transfer
194
+ ```
195
+
196
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
197
+
198
+ ```shell
199
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/jackalope-7B-GGUF jackalope-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
200
+ ```
201
+
202
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
203
+ </details>
204
+ <!-- README_GGUF.md-how-to-download end -->
205
+
206
+ <!-- README_GGUF.md-how-to-run start -->
207
+ ## Example `llama.cpp` command
208
+
209
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
210
+
211
+ ```shell
212
+ ./main -ngl 32 -m jackalope-7b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
213
+ ```
214
+
215
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
216
+
217
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
218
+
219
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
220
+
221
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
222
+
223
+ ## How to run in `text-generation-webui`
224
+
225
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
226
+
227
+ ## How to run from Python code
228
+
229
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
230
+
231
+ ### How to load this model in Python code, using ctransformers
232
+
233
+ #### First install the package
234
+
235
+ Run one of the following commands, according to your system:
236
+
237
+ ```shell
238
+ # Base ctransformers with no GPU acceleration
239
+ pip install ctransformers
240
+ # Or with CUDA GPU acceleration
241
+ pip install ctransformers[cuda]
242
+ # Or with AMD ROCm GPU acceleration (Linux only)
243
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
244
+ # Or with Metal GPU acceleration for macOS systems only
245
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
246
+ ```
247
+
248
+ #### Simple ctransformers example code
249
+
250
+ ```python
251
+ from ctransformers import AutoModelForCausalLM
252
+
253
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
254
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/jackalope-7B-GGUF", model_file="jackalope-7b.Q4_K_M.gguf", model_type="mistral", gpu_layers=50)
255
+
256
+ print(llm("AI is going to"))
257
+ ```
258
+
259
+ ## How to use with LangChain
260
+
261
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
262
+
263
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
264
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
265
+
266
+ <!-- README_GGUF.md-how-to-run end -->
267
+
268
+ <!-- footer start -->
269
+ <!-- 200823 -->
270
+ ## Discord
271
+
272
+ For further support, and discussions on these models and AI in general, join us at:
273
+
274
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
275
+
276
+ ## Thanks, and how to contribute
277
+
278
+ Thanks to the [chirper.ai](https://chirper.ai) team!
279
+
280
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
281
+
282
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
283
+
284
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
285
+
286
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
287
+
288
+ * Patreon: https://patreon.com/TheBlokeAI
289
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
290
+
291
+ **Special thanks to**: Aemon Algiz.
292
+
293
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
294
+
295
+
296
+ Thank you to all my generous patrons and donaters!
297
+
298
+ And thank you again to a16z for their generous grant.
299
+
300
+ <!-- footer end -->
301
+
302
+ <!-- original-model-card start -->
303
+ # Original model card: Open Access AI Collective's Jackalope 7B
304
+
305
+
306
+ <p><h1>🐰🦌 Jackalope 7B 🐰🦌</h1></p>
307
+
308
+
309
+ ![Jackalope Logo](https://huggingface.co/openaccess-ai-collective/jackalope-7b/resolve/main/images/jackalope.jpg "Jackalope Logo")
310
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
311
+
312
+
313
+ # Jackalope 7B
314
+
315
+ We have used the [SlimOrca dataset](https://huggingface.co/datasets/Open-Orca/SlimOrca), PIPPA, and various other open datasets
316
+ to fine-tune on top of [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1).
317
+
318
+ This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).
319
+ We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
320
+
321
+ This release highlights the efficiency of SlimOrca, while improving the ability of the model's multi-turn chat.
322
+
323
+ HF Leaderboard evals puts this model only slightly below the MistralOrca release, but can be considered a
324
+ reasonable tradeoff for a more general model that can handle multi-turn chat.
325
+
326
+ If you'd like to try the model now, we have it running on fast GPUs unquantized: https://huggingface.co/spaces/openaccess-ai-collective/jackalope-7b
327
+
328
+
329
+ Join the OpenAccess AI Collective Discord for more information about Axolotl trainer and other OAAIC models here:
330
+
331
+ https://discord.gg/5y8STgB3P3
332
+
333
+ Also join the AlignmentLab Discord for sneak-peak announcements:
334
+
335
+ https://AlignmentLab.ai
336
+
337
+
338
+
339
+ # Quantized Models
340
+
341
+ Quantized versions of this model are generously made available by [TheBloke](https://huggingface.co/TheBloke).
342
+
343
+ - AWQ: https://huggingface.co/TheBloke/Jackalope-7B-AWQ
344
+ - GPTQ: https://huggingface.co/TheBloke/Jackalope-7B-GPTQ
345
+ - GGUF: https://huggingface.co/TheBloke/Jackalope-7B-GGUF
346
+
347
+
348
+ # Prompt Template
349
+
350
+ We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
351
+
352
+ This means that, e.g., in [oobabooga](https://github.com/oobabooga/text-generation-webui/) the "`MPT-Chat`" instruction template should work, as it also uses ChatML.
353
+
354
+ This formatting is also available via a pre-defined [Transformers chat template](https://huggingface.co/docs/transformers/main/chat_templating),
355
+ which means that lists of messages can be formatted for you with the `apply_chat_template()` method:
356
+
357
+ ```python
358
+ chat = [
359
+ {"role": "system", "content": "You are JackalopeAI, a large language model trained by OpenAccess AI Collective. Write out your reasoning step-by-step to be sure you get the right answers!"}
360
+ {"role": "user", "content": "How are you?"},
361
+ {"role": "assistant", "content": "I am doing well!"},
362
+ {"role": "user", "content": "Please tell me about the mythical creatures called jackalopes."},
363
+ ]
364
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
365
+ ```
366
+
367
+ which will yield:
368
+
369
+ ```
370
+ <|im_start|>system
371
+ You are JackalopeAI. Write out your reasoning step-by-step to be sure you get the right answers!
372
+ <|im_end|>
373
+ <|im_start|>user
374
+ How are you?<|im_end|>
375
+ <|im_start|>assistant
376
+ I am doing well!<|im_end|>
377
+ <|im_start|>user
378
+ Please tell me about the mythical creatures called jackalopes.<|im_end|>
379
+ <|im_start|>assistant
380
+ ```
381
+
382
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized
383
+ and formatted conversation ready to pass to `model.generate()`.
384
+
385
+
386
+ # Evaluation
387
+
388
+ ## HuggingFace Leaderboard Performance
389
+
390
+ ![All benchmarks](https://huggingface.co/openaccess-ai-collective/jackalope-7b/resolve/main/images/bench.png)
391
+
392
+
393
+ | Metric | Value |
394
+ |-----------------------|--|
395
+ | MMLU (5-shot) | 63.63 |
396
+ | ARC (25-shot) | 63.31 |
397
+ | HellaSwag (10-shot) | 83.29 |
398
+ | TruthfulQA (0-shot) | 49.99 |
399
+ | Avg. | 65.06 |
400
+
401
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
402
+
403
+ # Dataset
404
+
405
+ We used a verified, curated, filtered selection of most of the GPT-4 augmented data from the OpenOrca dataset.
406
+ Additionally we include multi-turn chat from PIPPA, various datasets
407
+ by LDJ from Nous Research, MetaMathQA, and Chain-of-Thought augmented data from the train split of RiddleSense.
408
+
409
+ - [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca)
410
+ - [LDJnr/LessWrong-Amplify-Instruct](https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct)
411
+ - [LDJnr/Pure-Dove](https://huggingface.co/datasets/LDJnr/Pure-Dove)
412
+ - [LDJnr/Verified-Camel](https://huggingface.co/datasets/LDJnr/Verified-Camel)
413
+ - [PygmalionAI/PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA)
414
+ - [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
415
+ - [riddle_sense](https://huggingface.co/datasets/riddle_sense)
416
+
417
+
418
+ # Training
419
+
420
+ We trained with 8x A6000 GPUs for 96 hours, completing 4 epochs of full fine tuning on our dataset in one training run.
421
+ Commodity cost was ~$650.
422
+
423
+
424
+ # Citation
425
+
426
+ ```bibtex
427
+ @software{lian2023jackalope,
428
+ title = {Jackalope 7B: Mistral-7B Model Multi-Turn Chat tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
429
+ author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
430
+ year = {2023},
431
+ publisher = {HuggingFace},
432
+ journal = {HuggingFace repository},
433
+ howpublished = {\url{openaccess-ai-collective/jackalope-7b},
434
+ }
435
+ @misc{mukherjee2023orca,
436
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
437
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
438
+ year={2023},
439
+ eprint={2306.02707},
440
+ archivePrefix={arXiv},
441
+ primaryClass={cs.CL}
442
+ }
443
+ @misc{longpre2023flan,
444
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
445
+ author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
446
+ year={2023},
447
+ eprint={2301.13688},
448
+ archivePrefix={arXiv},
449
+ primaryClass={cs.AI}
450
+ }
451
+ ```
452
+
453
+ <!-- original-model-card end -->