TheBloke commited on
Commit
33e3f83
·
1 Parent(s): e1e700e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -26
README.md CHANGED
@@ -43,19 +43,17 @@ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is
43
 
44
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
45
 
46
- As of August 25th, here is a list of clients and libraries that are known to support GGUF:
47
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
48
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
49
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
50
- * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
51
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
52
- * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
53
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
54
- * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
55
-
56
- The clients and libraries below are expecting to add GGUF support shortly:
57
- <!-- README_GGUF.md-about-gguf end -->
58
 
 
59
  <!-- repositories-available start -->
60
  ## Repositories available
61
 
@@ -80,9 +78,7 @@ A chat between a curious user and an artificial intelligence assistant. The assi
80
 
81
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
82
 
83
- As of August 24th 2023 they are now compatible with KoboldCpp, release 1.41 and later.
84
-
85
- They are are not yet compatible with any other third-party UIS, libraries or utilities but this is expected to change very soon.
86
 
87
  ## Explanation of quantisation methods
88
  <details>
@@ -114,8 +110,8 @@ Refer to the Provided Files table below to see what files use which methods, and
114
  | [fiction.live-Kimiko-V2-70B.Q5_0.gguf](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF/blob/main/fiction.live-Kimiko-V2-70B.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
115
  | [fiction.live-Kimiko-V2-70B.Q5_K_S.gguf](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF/blob/main/fiction.live-Kimiko-V2-70B.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
116
  | [fiction.live-Kimiko-V2-70B.Q5_K_M.gguf](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF/blob/main/fiction.live-Kimiko-V2-70B.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
117
- | fiction.live-Kimiko-V2-70B.Q6_K.gguf | q6_K | 6 | 56.82 GB | 59.32 GB | very large, extremely low quality loss |
118
- | fiction.live-Kimiko-V2-70B.Q8_0.gguf | q8_0 | 8 | 73.29 GB | 75.79 GB | very large, extremely low quality loss - not recommended |
119
 
120
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
121
 
@@ -153,20 +149,19 @@ del fiction.live-Kimiko-V2-70B.Q8_0.gguf-split-a fiction.live-Kimiko-V2-70B.Q8_0
153
  ```
154
 
155
  </details>
156
-
157
  <!-- README_GGUF.md-provided-files end -->
158
 
159
  <!-- README_GGUF.md-how-to-run start -->
160
- ## How to run in `llama.cpp`
161
 
162
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
163
 
164
- For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
165
 
166
  ```
167
- ./main -t 10 -ngl 32 -m fiction.live-Kimiko-V2-70B.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Write a story about llamas ASSISTANT:"
168
  ```
169
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
170
 
171
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
172
 
@@ -179,6 +174,44 @@ For other parameters and how to use them, please refer to [the llama.cpp documen
179
  ## How to run in `text-generation-webui`
180
 
181
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
  <!-- README_GGUF.md-how-to-run end -->
183
 
184
  <!-- footer start -->
@@ -204,7 +237,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
204
 
205
  **Special thanks to**: Aemon Algiz.
206
 
207
- **Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
208
 
209
 
210
  Thank you to all my generous patrons and donaters!
@@ -217,7 +250,7 @@ And thank you again to a16z for their generous grant.
217
  # Original model card: nRuaif's Fiction Live Kimiko V2 70B
218
 
219
  ## Sponsor
220
- Thanks to fiction.live for sponsoring this finetune and make this a reality.
221
 
222
 
223
 
@@ -231,7 +264,7 @@ Thanks to fiction.live for sponsoring this finetune and make this a reality.
231
 
232
  - **Developed by:** nRuaif
233
  - **Model type:** large language model
234
- - **License:**
235
  - **Finetuned from model [optional]:** Llama-70B
236
  ### Model Sources [optional]
237
 
@@ -275,9 +308,9 @@ Model might have bias to NSFW due to the large % of NSFW data in the training se
275
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
276
 
277
 
278
- 3000 convos with 4090 cut off len.
279
 
280
- ### Training Procedure
281
 
282
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
283
 
 
43
 
44
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
45
 
46
+ Here are a list of clients and libraries that are known to support GGUF:
47
  * [llama.cpp](https://github.com/ggerganov/llama.cpp).
48
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
49
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
50
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
51
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
52
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
53
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
54
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
 
 
 
55
 
56
+ <!-- README_GGUF.md-about-gguf end -->
57
  <!-- repositories-available start -->
58
  ## Repositories available
59
 
 
78
 
79
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
80
 
81
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
 
 
82
 
83
  ## Explanation of quantisation methods
84
  <details>
 
110
  | [fiction.live-Kimiko-V2-70B.Q5_0.gguf](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF/blob/main/fiction.live-Kimiko-V2-70B.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
111
  | [fiction.live-Kimiko-V2-70B.Q5_K_S.gguf](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF/blob/main/fiction.live-Kimiko-V2-70B.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
112
  | [fiction.live-Kimiko-V2-70B.Q5_K_M.gguf](https://huggingface.co/TheBloke/fiction.live-Kimiko-V2-70B-GGUF/blob/main/fiction.live-Kimiko-V2-70B.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
113
+ | fiction.live-Kimiko-V2-70B.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
114
+ | fiction.live-Kimiko-V2-70B.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
115
 
116
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
117
 
 
149
  ```
150
 
151
  </details>
 
152
  <!-- README_GGUF.md-provided-files end -->
153
 
154
  <!-- README_GGUF.md-how-to-run start -->
155
+ ## Example `llama.cpp` command
156
 
157
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
158
 
159
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
160
 
161
  ```
162
+ ./main -t 10 -ngl 32 -m fiction.live-Kimiko-V2-70B.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
163
  ```
164
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
165
 
166
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
167
 
 
174
  ## How to run in `text-generation-webui`
175
 
176
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
177
+
178
+ ## How to run from Python code
179
+
180
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
181
+
182
+ ### How to load this model from Python using ctransformers
183
+
184
+ #### First install the package
185
+
186
+ ```bash
187
+ # Base ctransformers with no GPU acceleration
188
+ pip install ctransformers>=0.2.24
189
+ # Or with CUDA GPU acceleration
190
+ pip install ctransformers[cuda]>=0.2.24
191
+ # Or with ROCm GPU acceleration
192
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
193
+ # Or with Metal GPU acceleration for macOS systems
194
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
195
+ ```
196
+
197
+ #### Simple example code to load one of these GGUF models
198
+
199
+ ```python
200
+ from ctransformers import AutoModelForCausalLM
201
+
202
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
203
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/fiction.live-Kimiko-V2-70B-GGUF", model_file="fiction.live-Kimiko-V2-70B.q4_K_M.gguf", model_type="llama", gpu_layers=50)
204
+
205
+ print(llm("AI is going to"))
206
+ ```
207
+
208
+ ## How to use with LangChain
209
+
210
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
211
+
212
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
213
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
214
+
215
  <!-- README_GGUF.md-how-to-run end -->
216
 
217
  <!-- footer start -->
 
237
 
238
  **Special thanks to**: Aemon Algiz.
239
 
240
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
241
 
242
 
243
  Thank you to all my generous patrons and donaters!
 
250
  # Original model card: nRuaif's Fiction Live Kimiko V2 70B
251
 
252
  ## Sponsor
253
+ Thanks to fiction.live for sponsoring this finetune and make this a reality.
254
 
255
 
256
 
 
264
 
265
  - **Developed by:** nRuaif
266
  - **Model type:** large language model
267
+ - **License:**
268
  - **Finetuned from model [optional]:** Llama-70B
269
  ### Model Sources [optional]
270
 
 
308
  <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
309
 
310
 
311
+ 3000 convos with 4090 cut off len.
312
 
313
+ ### Training Procedure
314
 
315
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
316