TheBloke commited on
Commit
22eb7fe
·
1 Parent(s): f4ebec8

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +489 -0
README.md ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/elinas/chronos-13b
3
+ inference: false
4
+ license: other
5
+ model_creator: elinas
6
+ model_name: Chronos 13B
7
+ model_type: llama
8
+ prompt_template: 'Below is an instruction that describes a task. Write a response
9
+ that appropriately completes the request.
10
+
11
+
12
+ ### Instruction:
13
+
14
+ {prompt}
15
+
16
+
17
+ ### Response:
18
+
19
+ '
20
+ quantized_by: TheBloke
21
+ tags:
22
+ - llama
23
+ - pytorch
24
+ - chatbot
25
+ - storywriting
26
+ ---
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Chronos 13B - GGUF
46
+ - Model creator: [elinas](https://huggingface.co/elinas)
47
+ - Original model: [Chronos 13B](https://huggingface.co/elinas/chronos-13b)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains GGUF format model files for [elinas's Chronos 13B](https://huggingface.co/elinas/chronos-13b).
53
+
54
+ <!-- description end -->
55
+ <!-- README_GGUF.md-about-gguf start -->
56
+ ### About GGUF
57
+
58
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
59
+
60
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
61
+
62
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
63
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
64
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
65
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
66
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
67
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
68
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
69
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
70
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
71
+
72
+ <!-- README_GGUF.md-about-gguf end -->
73
+ <!-- repositories-available start -->
74
+ ## Repositories available
75
+
76
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/chronos-13B-AWQ)
77
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/Yhyu13/chronos-13b-gptq-4bit)
78
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-13B-GGUF)
79
+ * [elinas's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-13b)
80
+ <!-- repositories-available end -->
81
+
82
+ <!-- prompt-template start -->
83
+ ## Prompt template: Alpaca
84
+
85
+ ```
86
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
87
+
88
+ ### Instruction:
89
+ {prompt}
90
+
91
+ ### Response:
92
+
93
+ ```
94
+
95
+ <!-- prompt-template end -->
96
+ <!-- licensing start -->
97
+ ## Licensing
98
+
99
+ The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
100
+
101
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
102
+
103
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [elinas's Chronos 13B](https://huggingface.co/elinas/chronos-13b).
104
+ <!-- licensing end -->
105
+ <!-- compatibility_gguf start -->
106
+ ## Compatibility
107
+
108
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
109
+
110
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
111
+
112
+ ## Explanation of quantisation methods
113
+ <details>
114
+ <summary>Click to see details</summary>
115
+
116
+ The new methods available are:
117
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
118
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
119
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
120
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
121
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
122
+
123
+ Refer to the Provided Files table below to see what files use which methods, and how.
124
+ </details>
125
+ <!-- compatibility_gguf end -->
126
+
127
+ <!-- README_GGUF.md-provided-files start -->
128
+ ## Provided files
129
+
130
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
131
+ | ---- | ---- | ---- | ---- | ---- | ----- |
132
+ | [chronos-13B.Q2_K.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
133
+ | [chronos-13B.Q3_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
134
+ | [chronos-13B.Q3_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
135
+ | [chronos-13B.Q3_K_L.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
136
+ | [chronos-13B.Q4_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
137
+ | [chronos-13B.Q4_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
138
+ | [chronos-13B.Q4_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
139
+ | [chronos-13B.Q5_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
140
+ | [chronos-13B.Q5_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
141
+ | [chronos-13B.Q5_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
142
+ | [chronos-13B.Q6_K.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
143
+ | [chronos-13B.Q8_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
144
+
145
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
146
+
147
+
148
+
149
+ <!-- README_GGUF.md-provided-files end -->
150
+
151
+ <!-- README_GGUF.md-how-to-download start -->
152
+ ## How to download GGUF files
153
+
154
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
155
+
156
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
157
+ - LM Studio
158
+ - LoLLMS Web UI
159
+ - Faraday.dev
160
+
161
+ ### In `text-generation-webui`
162
+
163
+ Under Download Model, you can enter the model repo: TheBloke/chronos-13B-GGUF and below it, a specific filename to download, such as: chronos-13B.q4_K_M.gguf.
164
+
165
+ Then click Download.
166
+
167
+ ### On the command line, including multiple files at once
168
+
169
+ I recommend using the `huggingface-hub` Python library:
170
+
171
+ ```shell
172
+ pip3 install huggingface-hub>=0.17.1
173
+ ```
174
+
175
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
176
+
177
+ ```shell
178
+ huggingface-cli download TheBloke/chronos-13B-GGUF chronos-13B.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
179
+ ```
180
+
181
+ <details>
182
+ <summary>More advanced huggingface-cli download usage</summary>
183
+
184
+ You can also download multiple files at once with a pattern:
185
+
186
+ ```shell
187
+ huggingface-cli download TheBloke/chronos-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
188
+ ```
189
+
190
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
191
+
192
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
193
+
194
+ ```shell
195
+ pip3 install hf_transfer
196
+ ```
197
+
198
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
199
+
200
+ ```shell
201
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-13B-GGUF chronos-13B.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
202
+ ```
203
+
204
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
205
+ </details>
206
+ <!-- README_GGUF.md-how-to-download end -->
207
+
208
+ <!-- README_GGUF.md-how-to-run start -->
209
+ ## Example `llama.cpp` command
210
+
211
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
212
+
213
+ ```shell
214
+ ./main -ngl 32 -m chronos-13B.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
215
+ ```
216
+
217
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
218
+
219
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
220
+
221
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
222
+
223
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
224
+
225
+ ## How to run in `text-generation-webui`
226
+
227
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
228
+
229
+ ## How to run from Python code
230
+
231
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
232
+
233
+ ### How to load this model from Python using ctransformers
234
+
235
+ #### First install the package
236
+
237
+ ```bash
238
+ # Base ctransformers with no GPU acceleration
239
+ pip install ctransformers>=0.2.24
240
+ # Or with CUDA GPU acceleration
241
+ pip install ctransformers[cuda]>=0.2.24
242
+ # Or with ROCm GPU acceleration
243
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
244
+ # Or with Metal GPU acceleration for macOS systems
245
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
246
+ ```
247
+
248
+ #### Simple example code to load one of these GGUF models
249
+
250
+ ```python
251
+ from ctransformers import AutoModelForCausalLM
252
+
253
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
254
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/chronos-13B-GGUF", model_file="chronos-13B.q4_K_M.gguf", model_type="llama", gpu_layers=50)
255
+
256
+ print(llm("AI is going to"))
257
+ ```
258
+
259
+ ## How to use with LangChain
260
+
261
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
262
+
263
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
264
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
265
+
266
+ <!-- README_GGUF.md-how-to-run end -->
267
+
268
+ <!-- footer start -->
269
+ <!-- 200823 -->
270
+ ## Discord
271
+
272
+ For further support, and discussions on these models and AI in general, join us at:
273
+
274
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
275
+
276
+ ## Thanks, and how to contribute
277
+
278
+ Thanks to the [chirper.ai](https://chirper.ai) team!
279
+
280
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
281
+
282
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
283
+
284
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
285
+
286
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
287
+
288
+ * Patreon: https://patreon.com/TheBlokeAI
289
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
290
+
291
+ **Special thanks to**: Aemon Algiz.
292
+
293
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
294
+
295
+
296
+ Thank you to all my generous patrons and donaters!
297
+
298
+ And thank you again to a16z for their generous grant.
299
+
300
+ <!-- footer end -->
301
+
302
+ <!-- original-model-card start -->
303
+ # Original model card: elinas's Chronos 13B
304
+
305
+
306
+ # chronos-13b
307
+
308
+ This is the fp16 PyTorch / HF version of **chronos-13b**
309
+
310
+ This model is primarily focused on chat, roleplay, and storywriting, but can accomplish other tasks such as simple reasoning and coding.
311
+
312
+ Chronos generates very long outputs with coherent text, largely due to the human inputs it was trained on.
313
+
314
+ This model uses Alpaca formatting, so for optimal model performance, use:
315
+ ```
316
+ ### Instruction:
317
+ Your instruction or question here.
318
+ ### Response:
319
+ ```
320
+
321
+ [4bit Quantized version](https://huggingface.co/elinas/chronos-13b-4bit)
322
+
323
+ [GGML Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-13B-GGML)
324
+
325
+ <!--**Support My Development of New Models**
326
+ <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;'
327
+ src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>-->
328
+
329
+ --
330
+ license: other
331
+ ---
332
+ # LLaMA Model Card
333
+
334
+ ## Model details
335
+ **Organization developing the model**
336
+ The FAIR team of Meta AI.
337
+
338
+ **Model date**
339
+ LLaMA was trained between December. 2022 and Feb. 2023.
340
+
341
+ **Model version**
342
+ This is version 1 of the model.
343
+
344
+ **Model type**
345
+ LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters.
346
+
347
+ **Paper or resources for more information**
348
+ More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/.
349
+
350
+ **Citations details**
351
+ https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/
352
+
353
+ **License**
354
+ Non-commercial bespoke license
355
+
356
+ **Where to send questions or comments about the model**
357
+ Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue.
358
+
359
+ ## Intended use
360
+ **Primary intended uses**
361
+ The primary use of LLaMA is research on large language models, including:
362
+ exploring potential applications such as question answering, natural language understanding or reading comprehension,
363
+ understanding capabilities and limitations of current language models, and developing techniques to improve those,
364
+ evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations.
365
+
366
+ **Primary intended users**
367
+ The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence.
368
+
369
+ **Out-of-scope use cases**
370
+ LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers.
371
+
372
+ ## Factors
373
+ **Relevant factors**
374
+ One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model.
375
+
376
+ **Evaluation factors**
377
+ As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model.
378
+
379
+ ## Metrics
380
+ **Model performance measures**
381
+ We use the following measure to evaluate the model:
382
+ - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs,
383
+ - Exact match for question answering,
384
+ - The toxicity score from Perspective API on RealToxicityPrompts.
385
+
386
+ **Decision thresholds**
387
+ Not applicable.
388
+
389
+ **Approaches to uncertainty and variability**
390
+ Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training.
391
+
392
+ ## Evaluation datasets
393
+ The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs.
394
+
395
+ ## Training dataset
396
+ The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing.
397
+
398
+ ## Quantitative analysis
399
+ Hyperparameters for the model architecture
400
+
401
+
402
+ <table>
403
+ <thead>
404
+ <tr>
405
+ <th >LLaMA</th> <th colspan=6>Model hyper parameters </th>
406
+ </tr>
407
+ <tr>
408
+ <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th>
409
+ </tr>
410
+ </thead>
411
+ <tbody>
412
+ <tr>
413
+ <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T
414
+ </tr>
415
+ <tr>
416
+ <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T
417
+ </tr>
418
+ <tr>
419
+ <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T
420
+ </tr>
421
+ <tr>
422
+ <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T
423
+ </tr>
424
+ </tbody>
425
+ </table>
426
+
427
+ *Table 1 - Summary of LLama Model Hyperparameters*
428
+
429
+ We present our results on eight standard common sense reasoning benchmarks in the table below.
430
+ <table>
431
+ <thead>
432
+ <tr>
433
+ <th>LLaMA</th> <th colspan=9>Reasoning tasks </th>
434
+ </tr>
435
+ <tr>
436
+ <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th>
437
+ </tr>
438
+ </thead>
439
+ <tbody>
440
+ <tr>
441
+ <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93
442
+ </th>
443
+ <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94
444
+ </th>
445
+ <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92
446
+ </th>
447
+ <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr>
448
+ </tbody>
449
+ </table>
450
+ *Table 2 - Summary of LLama Model Performance on Reasoning tasks*
451
+
452
+
453
+ We present our results on bias in the table below. Note that lower value is better indicating lower bias.
454
+
455
+
456
+ | No | Category | FAIR LLM |
457
+ | --- | -------------------- | -------- |
458
+ | 1 | Gender | 70.6 |
459
+ | 2 | Religion | 79 |
460
+ | 3 | Race/Color | 57 |
461
+ | 4 | Sexual orientation | 81 |
462
+ | 5 | Age | 70.1 |
463
+ | 6 | Nationality | 64.2 |
464
+ | 7 | Disability | 66.7 |
465
+ | 8 | Physical appearance | 77.8 |
466
+ | 9 | Socioeconomic status | 71.5 |
467
+ | | LLaMA Average | 66.6 |
468
+
469
+ *Table 3 - Summary bias of our model output*
470
+
471
+
472
+
473
+ ## Ethical considerations
474
+ **Data**
475
+ The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data.
476
+
477
+ **Human life**
478
+ The model is not intended to inform decisions about matters central to human life, and should not be used in such a way.
479
+
480
+ **Mitigations**
481
+ We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier.
482
+
483
+ **Risks and harms**
484
+ Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard.
485
+
486
+ **Use cases**
487
+ LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
488
+
489
+ <!-- original-model-card end -->