File size: 19,362 Bytes
6bb7467
 
 
a5fa0e3
 
 
6bb7467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
license: llama2
model_name: WizardMath 13B V1.0
base_model: WizardLM/WizardMath-13B-V1.0
inference: false
model_creator: WizardLM
model_type: llama
prompt_template: 'Below is an instruction that describes a task. Write a response
  that appropriately completes the request.



  ### Instruction:

  {prompt}



  ### Response: Let''s think step by step.

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# WizardMath 13B V1.0 - AWQ
- Model creator: [WizardLM](https://huggingface.co/WizardLM)
- Original model: [WizardMath 13B V1.0](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)

<!-- description start -->
## Description

This repo contains AWQ model files for [WizardLM's WizardMath 13B V1.0](https://huggingface.co/WizardLM/WizardMath-13B-V1.0).


### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.

It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-GGUF)
* [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardMath-13B-V1.0)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Alpaca-CoT

```
Below is an instruction that describes a task. Write a response that appropriately completes the request.


### Instruction:
{prompt}


### Response: Let's think step by step.

```

<!-- prompt-template end -->


<!-- README_AWQ.md-provided-files start -->
## Provided files and AWQ parameters

For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.

Models are released as sharded safetensors files.

| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
| ------ | ---- | -- | ----------- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/WizardMath-13B-V1.0-AWQ/tree/main) | 4 | 128 | [CamelAI Math](https://huggingface.co/datasets/andersonbcdefg/math) | 4096 | 7.25 GB

<!-- README_AWQ.md-provided-files end -->

<!-- README_AWQ.md-use-from-vllm start -->
## Serving this model from vLLM

Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

- When using vLLM as a server, pass the `--quantization awq` parameter, for example:

```shell
python3 python -m vllm.entrypoints.api_server --model TheBloke/WizardMath-13B-V1.0-AWQ --quantization awq
```

When using vLLM from Python code, pass the `quantization=awq` parameter, for example:

```python
from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/WizardMath-13B-V1.0-AWQ", quantization="awq")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
<!-- README_AWQ.md-use-from-vllm start -->

<!-- README_AWQ.md-use-from-python start -->
## How to use this AWQ model from Python code

### Install the necessary packages

Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later

```shell
pip3 install autoawq
```

If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
```

### You can then try the following example code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_name_or_path = "TheBloke/WizardMath-13B-V1.0-AWQ"

# Load model
model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
                                          trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.


### Instruction:
{prompt}


### Response: Let's think step by step.

'''

print("\n\n*** Generate:")

tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    max_new_tokens=512
)

print("Output: ", tokenizer.decode(generation_output[0]))

# Inference can also be done using transformers' pipeline
from transformers import pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_AWQ.md-use-from-python end -->

<!-- README_AWQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
<!-- README_AWQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik BjΓ€reholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 쀀ꡐ κΉ€, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: WizardLM's WizardMath 13B V1.0



## WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct (RLEIF)


<p align="center">
πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a>  β€’πŸ± <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a>  β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>   β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>  <br>
</p>
<p align="center">
    πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
</p>

|  Model  |  Checkpoint  | Paper    | HumanEval  |   MBPP | Demo | License |
| ----- |------| ---- |------|-------| ----- |  ----- | 
|  WizardCoder-Python-34B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  73.2   | 61.2 | [Demo](http://47.103.63.15:50085/) |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-15B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  59.8   |50.6 | -- |  <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |
|  WizardCoder-Python-13B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  64.0   | 55.6 | -- |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-Python-7B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  55.5   | 51.6 | [Demo](http://47.103.63.15:50088/) |  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a>  |
|  WizardCoder-3B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  34.8   |37.4 | -- |  <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |
|  WizardCoder-1B-V1.0  |   πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a>   |  πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  |  23.8   |28.6 | -- |  <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a>  |


| Model | Checkpoint | Paper  | GSM8k | MATH  |Online Demo| License|
| ----- |------| ---- |------|-------| ----- | ----- |
| WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6**  |  **22.7**	|[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2  </a> |
| WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9**  |  **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
| WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a>  |  πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| 	 **54.9**  |  **10.7** | [Demo](http://47.103.63.15:50080/)|  <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2  </a>|    

   

<font size=4>
    
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup>  | <sup>GSM8k</sup> | <sup>HumanEval</sup>  | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- | 
| <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup>	 |<sup>**77.6%**</sup>	 | <sup>   **50.6 pass@1**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>|  | <sup>7.06</sup> | <sup>89.17%</sup>	 |<sup>55.3%</sup>	 | <sup>36.6  pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> |  | <sup>6.76</sup>  |<sup>86.32%</sup>	 | 	 | <sup>25.0  pass@1</sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup>  | | <sup>7.01</sup> |                    | |  <sup>37.8  pass@1</sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> |  | <sup>6.35</sup> | <sup>75.31%</sup> |  | <sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>|  <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>|  |  |  |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
</font>

**Github Repo**: https://github.com/nlpxucan/WizardLM/tree/main/WizardMath

**Twitter**: https://twitter.com/WizardLM_AI/status/1689998428200112128

**Discord**: https://discord.gg/VZjjHtWrKs

## Comparing WizardMath-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our **WizardMath-70B-V1.0 attains the fifth position in this benchmark**, surpassing ChatGPT (81.6 vs. 80.8) , Claude Instant (81.6 vs. 80.9), PaLM 2 540B (81.6 vs. 80.7).

<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardMath/images/wizardmath_gsm8k.png" alt="WizardMath" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
</p>

❗<b>Note for model system prompts usage:</b>

Please use **the same systems prompts strictly** with us, and we do not guarantee the accuracy of the **quantified versions**.

**Default version:**

```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
```


**CoT Version:** οΌˆβ—For the **simple** math questions, we do NOT recommend to use the CoT prompt.οΌ‰ 


```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
```

## Inference WizardMath Demo Script

We provide the WizardMath inference demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo).


❗<b>To commen concern about dataset:</b>

Recently, there have been clear changes in the open-source policy and regulations of our overall organization's code, data, and models. 
Despite this, we have still worked hard to obtain opening the weights of the model first, but the data involves stricter auditing and is in review with our legal team .
Our researchers have no authority to publicly release them without authorization.
Thank you for your understanding.


## Citation

Please cite the repo if you use the data, method or code in this repo.

```
@article{luo2023wizardmath,
  title={WizardMath: Empowering Mathematical Reasoning for Large Language Models via Reinforced Evol-Instruct},
  author={Luo, Haipeng and Sun, Qingfeng and Xu, Can and Zhao, Pu and Lou, Jianguang and Tao, Chongyang and Geng, Xiubo and Lin, Qingwei and Chen, Shifeng and Zhang, Dongmei},
  journal={arXiv preprint arXiv:2308.09583},
  year={2023}
}
```