TheBloke commited on
Commit
cf02279
1 Parent(s): e1c9213

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -23
README.md CHANGED
@@ -3,7 +3,7 @@ inference: false
3
  language:
4
  - fr
5
  library_name: transformers
6
- license: other
7
  model_creator: bofenghuang
8
  model_link: https://huggingface.co/bofenghuang/vigogne-2-7b-instruct
9
  model_name: Vigogne 2 7B Instruct
@@ -17,17 +17,20 @@ tags:
17
  ---
18
 
19
  <!-- header start -->
20
- <div style="width: 100%;">
21
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
22
  </div>
23
  <div style="display: flex; justify-content: space-between; width: 100%;">
24
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
26
  </div>
27
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
  </div>
30
  </div>
 
 
31
  <!-- header end -->
32
 
33
  # Vigogne 2 7B Instruct - GGML
@@ -38,6 +41,13 @@ tags:
38
 
39
  This repo contains GGML format model files for [bofenghuang's Vigogne 2 7B Instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct).
40
 
 
 
 
 
 
 
 
41
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
42
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
43
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
@@ -49,7 +59,8 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
49
  ## Repositories available
50
 
51
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GPTQ)
52
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML)
 
53
  * [bofenghuang's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct)
54
 
55
  ## Prompt template: Alpaca
@@ -61,20 +72,19 @@ Below is an instruction that describes a task. Write a response that appropriate
61
  {prompt}
62
 
63
  ### Response:
 
64
  ```
65
 
66
  <!-- compatibility_ggml start -->
67
  ## Compatibility
68
 
69
- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
70
-
71
- These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.
72
 
73
- ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
74
 
75
- These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
76
 
77
- They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.
78
 
79
  ## Explanation of the new k-quant methods
80
  <details>
@@ -97,17 +107,17 @@ Refer to the Provided Files table below to see what files use which methods, and
97
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
98
  | ---- | ---- | ---- | ---- | ---- | ----- |
99
  | [vigogne-2-7b-instruct.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q2_K.bin) | q2_K | 2 | 2.87 GB| 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
100
- | [vigogne-2-7b-instruct.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.60 GB| 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
101
- | [vigogne-2-7b-instruct.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.28 GB| 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
102
  | [vigogne-2-7b-instruct.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 2.95 GB| 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
 
 
103
  | [vigogne-2-7b-instruct.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.83 GB| 6.33 GB | Original quant method, 4-bit. |
104
- | [vigogne-2-7b-instruct.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.24 GB| 6.74 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
105
- | [vigogne-2-7b-instruct.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.08 GB| 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
106
  | [vigogne-2-7b-instruct.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.83 GB| 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
 
 
107
  | [vigogne-2-7b-instruct.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.65 GB| 7.15 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
108
- | [vigogne-2-7b-instruct.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
109
- | [vigogne-2-7b-instruct.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.78 GB| 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
110
  | [vigogne-2-7b-instruct.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.65 GB| 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
 
 
111
  | [vigogne-2-7b-instruct.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q6_K.bin) | q6_K | 6 | 5.53 GB| 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
112
  | [vigogne-2-7b-instruct.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.13 GB| 9.63 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
113
 
@@ -115,22 +125,29 @@ Refer to the Provided Files table below to see what files use which methods, and
115
 
116
  ## How to run in `llama.cpp`
117
 
118
- I use the following command line; adjust for your tastes and needs:
 
 
119
 
120
  ```
121
- ./main -t 10 -ngl 32 -m vigogne-2-7b-instruct.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
122
  ```
123
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
124
 
125
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
126
 
 
 
127
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
128
 
 
 
129
  ## How to run in `text-generation-webui`
130
 
131
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
132
 
133
  <!-- footer start -->
 
134
  ## Discord
135
 
136
  For further support, and discussions on these models and AI in general, join us at:
@@ -150,13 +167,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
150
  * Patreon: https://patreon.com/TheBlokeAI
151
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
152
 
153
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
154
 
155
- **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
156
 
157
 
158
  Thank you to all my generous patrons and donaters!
159
 
 
 
160
  <!-- footer end -->
161
 
162
  # Original model card: bofenghuang's Vigogne 2 7B Instruct
 
3
  language:
4
  - fr
5
  library_name: transformers
6
+ license: llama2
7
  model_creator: bofenghuang
8
  model_link: https://huggingface.co/bofenghuang/vigogne-2-7b-instruct
9
  model_name: Vigogne 2 7B Instruct
 
17
  ---
18
 
19
  <!-- header start -->
20
+ <!-- 200823 -->
21
+ <div style="width: auto; margin-left: auto; margin-right: auto">
22
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
23
  </div>
24
  <div style="display: flex; justify-content: space-between; width: 100%;">
25
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
27
  </div>
28
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
29
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
30
  </div>
31
  </div>
32
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
33
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
34
  <!-- header end -->
35
 
36
  # Vigogne 2 7B Instruct - GGML
 
41
 
42
  This repo contains GGML format model files for [bofenghuang's Vigogne 2 7B Instruct](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct).
43
 
44
+ ### Important note regarding GGML files.
45
+
46
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
47
+
48
+ Please use the GGUF models instead.
49
+ ### About GGML
50
+
51
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
52
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
53
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
 
59
  ## Repositories available
60
 
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGUF)
63
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML)
64
  * [bofenghuang's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bofenghuang/vigogne-2-7b-instruct)
65
 
66
  ## Prompt template: Alpaca
 
72
  {prompt}
73
 
74
  ### Response:
75
+
76
  ```
77
 
78
  <!-- compatibility_ggml start -->
79
  ## Compatibility
80
 
81
+ These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
 
 
82
 
83
+ For support with latest llama.cpp, please use GGUF files instead.
84
 
85
+ The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
86
 
87
+ As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
88
 
89
  ## Explanation of the new k-quant methods
90
  <details>
 
107
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
108
  | ---- | ---- | ---- | ---- | ---- | ----- |
109
  | [vigogne-2-7b-instruct.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q2_K.bin) | q2_K | 2 | 2.87 GB| 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
 
 
110
  | [vigogne-2-7b-instruct.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 2.95 GB| 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
111
+ | [vigogne-2-7b-instruct.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.28 GB| 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
112
+ | [vigogne-2-7b-instruct.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.60 GB| 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
113
  | [vigogne-2-7b-instruct.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.83 GB| 6.33 GB | Original quant method, 4-bit. |
 
 
114
  | [vigogne-2-7b-instruct.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.83 GB| 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
115
+ | [vigogne-2-7b-instruct.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.08 GB| 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
116
+ | [vigogne-2-7b-instruct.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.24 GB| 6.74 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
117
  | [vigogne-2-7b-instruct.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.65 GB| 7.15 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
 
 
118
  | [vigogne-2-7b-instruct.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.65 GB| 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
119
+ | [vigogne-2-7b-instruct.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.78 GB| 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
120
+ | [vigogne-2-7b-instruct.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
121
  | [vigogne-2-7b-instruct.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q6_K.bin) | q6_K | 6 | 5.53 GB| 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
122
  | [vigogne-2-7b-instruct.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/Vigogne-2-7B-Instruct-GGML/blob/main/vigogne-2-7b-instruct.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.13 GB| 9.63 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
123
 
 
125
 
126
  ## How to run in `llama.cpp`
127
 
128
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
129
+
130
+ For compatibility with latest llama.cpp, please use GGUF files instead.
131
 
132
  ```
133
+ ./main -t 10 -ngl 32 -m vigogne-2-7b-instruct.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nWrite a story about llamas\n\n### Response:"
134
  ```
135
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
136
 
137
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
138
 
139
+ Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
140
+
141
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
142
 
143
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
144
+
145
  ## How to run in `text-generation-webui`
146
 
147
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
148
 
149
  <!-- footer start -->
150
+ <!-- 200823 -->
151
  ## Discord
152
 
153
  For further support, and discussions on these models and AI in general, join us at:
 
167
  * Patreon: https://patreon.com/TheBlokeAI
168
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
169
 
170
+ **Special thanks to**: Aemon Algiz.
171
 
172
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
173
 
174
 
175
  Thank you to all my generous patrons and donaters!
176
 
177
+ And thank you again to a16z for their generous grant.
178
+
179
  <!-- footer end -->
180
 
181
  # Original model card: bofenghuang's Vigogne 2 7B Instruct