TheBloke commited on
Commit
b731fca
·
1 Parent(s): d7cc772

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +462 -0
README.md ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ajibawa-2023/SlimOrca-13B
3
+ datasets:
4
+ - Open-Orca/SlimOrca
5
+ - ajibawa-2023/SlimOrca-ShareGPT
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: cc-by-nc-nd-4.0
10
+ model_creator: Feynman Innovations
11
+ model_name: SlimOrca 13B
12
+ model_type: llama
13
+ prompt_template: 'This is a conversation with your Assistant. It is a computer program
14
+ designed to help you with various tasks such as answering questions, providing recommendations,
15
+ and helping with decision making. You can ask it anything you want and it will do
16
+ its best to give you accurate and relevant information.
17
+
18
+
19
+ Context
20
+
21
+ You are a helpful AI assistant.
22
+
23
+
24
+ USER: {prompt}
25
+
26
+ ASSISTANT:
27
+
28
+ '
29
+ quantized_by: TheBloke
30
+ ---
31
+ <!-- markdownlint-disable MD041 -->
32
+
33
+ <!-- header start -->
34
+ <!-- 200823 -->
35
+ <div style="width: auto; margin-left: auto; margin-right: auto">
36
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
37
+ </div>
38
+ <div style="display: flex; justify-content: space-between; width: 100%;">
39
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
41
+ </div>
42
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
43
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
44
+ </div>
45
+ </div>
46
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
47
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
48
+ <!-- header end -->
49
+
50
+ # SlimOrca 13B - GPTQ
51
+ - Model creator: [Feynman Innovations](https://huggingface.co/ajibawa-2023)
52
+ - Original model: [SlimOrca 13B](https://huggingface.co/ajibawa-2023/SlimOrca-13B)
53
+
54
+ <!-- description start -->
55
+ # Description
56
+
57
+ This repo contains GPTQ model files for [Feynman Innovations's SlimOrca 13B](https://huggingface.co/ajibawa-2023/SlimOrca-13B).
58
+
59
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
60
+
61
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
62
+
63
+ <!-- description end -->
64
+ <!-- repositories-available start -->
65
+ ## Repositories available
66
+
67
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SlimOrca-13B-AWQ)
68
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ)
69
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SlimOrca-13B-GGUF)
70
+ * [Feynman Innovations's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ajibawa-2023/SlimOrca-13B)
71
+ <!-- repositories-available end -->
72
+
73
+ <!-- prompt-template start -->
74
+ ## Prompt template: Ajibawa-Assistant
75
+
76
+ ```
77
+ This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
78
+
79
+ Context
80
+ You are a helpful AI assistant.
81
+
82
+ USER: {prompt}
83
+ ASSISTANT:
84
+
85
+ ```
86
+
87
+ <!-- prompt-template end -->
88
+ <!-- licensing start -->
89
+ ## Licensing
90
+
91
+ The creator of the source model has listed its license as `cc-by-nc-nd-4.0`, and this quantization has therefore used that same license.
92
+
93
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
94
+
95
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Feynman Innovations's SlimOrca 13B](https://huggingface.co/ajibawa-2023/SlimOrca-13B).
96
+ <!-- licensing end -->
97
+
98
+ <!-- README_GPTQ.md-compatible clients start -->
99
+ ## Known compatible clients / servers
100
+
101
+ These GPTQ models are known to work in the following inference servers/webuis.
102
+
103
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
104
+ - [KoboldAI United](https://github.com/henk717/koboldai)
105
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
106
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
107
+
108
+ This may not be a complete list; if you know of others, please let me know!
109
+ <!-- README_GPTQ.md-compatible clients end -->
110
+
111
+ <!-- README_GPTQ.md-provided-files start -->
112
+ ## Provided files, and GPTQ parameters
113
+
114
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
115
+
116
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
117
+
118
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
119
+
120
+ <details>
121
+ <summary>Explanation of GPTQ parameters</summary>
122
+
123
+ - Bits: The bit size of the quantised model.
124
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
125
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
126
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
127
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
128
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
129
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
130
+
131
+ </details>
132
+
133
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
134
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
135
+ | [main](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
136
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
137
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
138
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
139
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 14.54 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
140
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
141
+
142
+ <!-- README_GPTQ.md-provided-files end -->
143
+
144
+ <!-- README_GPTQ.md-download-from-branches start -->
145
+ ## How to download, including from branches
146
+
147
+ ### In text-generation-webui
148
+
149
+ To download from the `main` branch, enter `TheBloke/SlimOrca-13B-GPTQ` in the "Download model" box.
150
+
151
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/SlimOrca-13B-GPTQ:gptq-4bit-32g-actorder_True`
152
+
153
+ ### From the command line
154
+
155
+ I recommend using the `huggingface-hub` Python library:
156
+
157
+ ```shell
158
+ pip3 install huggingface-hub
159
+ ```
160
+
161
+ To download the `main` branch to a folder called `SlimOrca-13B-GPTQ`:
162
+
163
+ ```shell
164
+ mkdir SlimOrca-13B-GPTQ
165
+ huggingface-cli download TheBloke/SlimOrca-13B-GPTQ --local-dir SlimOrca-13B-GPTQ --local-dir-use-symlinks False
166
+ ```
167
+
168
+ To download from a different branch, add the `--revision` parameter:
169
+
170
+ ```shell
171
+ mkdir SlimOrca-13B-GPTQ
172
+ huggingface-cli download TheBloke/SlimOrca-13B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir SlimOrca-13B-GPTQ --local-dir-use-symlinks False
173
+ ```
174
+
175
+ <details>
176
+ <summary>More advanced huggingface-cli download usage</summary>
177
+
178
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
179
+
180
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
181
+
182
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
183
+
184
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
185
+
186
+ ```shell
187
+ pip3 install hf_transfer
188
+ ```
189
+
190
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
191
+
192
+ ```shell
193
+ mkdir SlimOrca-13B-GPTQ
194
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/SlimOrca-13B-GPTQ --local-dir SlimOrca-13B-GPTQ --local-dir-use-symlinks False
195
+ ```
196
+
197
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
198
+ </details>
199
+
200
+ ### With `git` (**not** recommended)
201
+
202
+ To clone a specific branch with `git`, use a command like this:
203
+
204
+ ```shell
205
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/SlimOrca-13B-GPTQ
206
+ ```
207
+
208
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
209
+
210
+ <!-- README_GPTQ.md-download-from-branches end -->
211
+ <!-- README_GPTQ.md-text-generation-webui start -->
212
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
213
+
214
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
215
+
216
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
217
+
218
+ 1. Click the **Model tab**.
219
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/SlimOrca-13B-GPTQ`.
220
+
221
+ - To download from a specific branch, enter for example `TheBloke/SlimOrca-13B-GPTQ:gptq-4bit-32g-actorder_True`
222
+ - see Provided Files above for the list of branches for each option.
223
+
224
+ 3. Click **Download**.
225
+ 4. The model will start downloading. Once it's finished it will say "Done".
226
+ 5. In the top left, click the refresh icon next to **Model**.
227
+ 6. In the **Model** dropdown, choose the model you just downloaded: `SlimOrca-13B-GPTQ`
228
+ 7. The model will automatically load, and is now ready for use!
229
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
230
+
231
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
232
+
233
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
234
+
235
+ <!-- README_GPTQ.md-text-generation-webui end -->
236
+
237
+ <!-- README_GPTQ.md-use-from-tgi start -->
238
+ ## Serving this model from Text Generation Inference (TGI)
239
+
240
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
241
+
242
+ Example Docker parameters:
243
+
244
+ ```shell
245
+ --model-id TheBloke/SlimOrca-13B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
246
+ ```
247
+
248
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
249
+
250
+ ```shell
251
+ pip3 install huggingface-hub
252
+ ```
253
+
254
+ ```python
255
+ from huggingface_hub import InferenceClient
256
+
257
+ endpoint_url = "https://your-endpoint-url-here"
258
+
259
+ prompt = "Tell me about AI"
260
+ prompt_template=f'''This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
261
+
262
+ Context
263
+ You are a helpful AI assistant.
264
+
265
+ USER: {prompt}
266
+ ASSISTANT:
267
+ '''
268
+
269
+ client = InferenceClient(endpoint_url)
270
+ response = client.text_generation(prompt,
271
+ max_new_tokens=128,
272
+ do_sample=True,
273
+ temperature=0.7,
274
+ top_p=0.95,
275
+ top_k=40,
276
+ repetition_penalty=1.1)
277
+
278
+ print(f"Model output: {response}")
279
+ ```
280
+ <!-- README_GPTQ.md-use-from-tgi end -->
281
+ <!-- README_GPTQ.md-use-from-python start -->
282
+ ## Python code example: inference from this GPTQ model
283
+
284
+ ### Install the necessary packages
285
+
286
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
287
+
288
+ ```shell
289
+ pip3 install --upgrade transformers optimum
290
+ # If using PyTorch 2.1 + CUDA 12.x:
291
+ pip3 install --upgrade auto-gptq
292
+ # or, if using PyTorch 2.1 + CUDA 11.x:
293
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
294
+ ```
295
+
296
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
297
+
298
+ ```shell
299
+ pip3 uninstall -y auto-gptq
300
+ git clone https://github.com/PanQiWei/AutoGPTQ
301
+ cd AutoGPTQ
302
+ git checkout v0.5.1
303
+ pip3 install .
304
+ ```
305
+
306
+ ### Example Python code
307
+
308
+ ```python
309
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
310
+
311
+ model_name_or_path = "TheBloke/SlimOrca-13B-GPTQ"
312
+ # To use a different branch, change revision
313
+ # For example: revision="gptq-4bit-32g-actorder_True"
314
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
315
+ device_map="auto",
316
+ trust_remote_code=False,
317
+ revision="main")
318
+
319
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
320
+
321
+ prompt = "Tell me about AI"
322
+ prompt_template=f'''This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
323
+
324
+ Context
325
+ You are a helpful AI assistant.
326
+
327
+ USER: {prompt}
328
+ ASSISTANT:
329
+ '''
330
+
331
+ print("\n\n*** Generate:")
332
+
333
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
334
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
335
+ print(tokenizer.decode(output[0]))
336
+
337
+ # Inference can also be done using transformers' pipeline
338
+
339
+ print("*** Pipeline:")
340
+ pipe = pipeline(
341
+ "text-generation",
342
+ model=model,
343
+ tokenizer=tokenizer,
344
+ max_new_tokens=512,
345
+ do_sample=True,
346
+ temperature=0.7,
347
+ top_p=0.95,
348
+ top_k=40,
349
+ repetition_penalty=1.1
350
+ )
351
+
352
+ print(pipe(prompt_template)[0]['generated_text'])
353
+ ```
354
+ <!-- README_GPTQ.md-use-from-python end -->
355
+
356
+ <!-- README_GPTQ.md-compatibility start -->
357
+ ## Compatibility
358
+
359
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
360
+
361
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
362
+
363
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
364
+ <!-- README_GPTQ.md-compatibility end -->
365
+
366
+ <!-- footer start -->
367
+ <!-- 200823 -->
368
+ ## Discord
369
+
370
+ For further support, and discussions on these models and AI in general, join us at:
371
+
372
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
373
+
374
+ ## Thanks, and how to contribute
375
+
376
+ Thanks to the [chirper.ai](https://chirper.ai) team!
377
+
378
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
379
+
380
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
381
+
382
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
383
+
384
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
385
+
386
+ * Patreon: https://patreon.com/TheBlokeAI
387
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
388
+
389
+ **Special thanks to**: Aemon Algiz.
390
+
391
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
392
+
393
+
394
+ Thank you to all my generous patrons and donaters!
395
+
396
+ And thank you again to a16z for their generous grant.
397
+
398
+ <!-- footer end -->
399
+
400
+ # Original model card: Feynman Innovations's SlimOrca 13B
401
+
402
+
403
+ **SlimOrca-13B: A General Purpose Intelligent Model**
404
+
405
+
406
+ This Model is trained on refined version of SlimOrca made available by [Open-Orca](https://huggingface.co/Open-Orca) team.
407
+ The idea was to check how this Model will perform in the absence of "system" prompt/instruction.
408
+ This Model is very good in various types of General Purpose content generation such as Q&A (including multiple choice), Articles from Summary, Sentiment Analysis,
409
+ Context & Hypothesis, Reviews, Erotic story generation etc.
410
+ It can also generate Uncensored content. Kindly be careful while generating Uncensored content as you will be responsible for what you
411
+ generate.
412
+
413
+ It is trained on 517981 set of conversations. Each set having 2 conversations. I have shared this [data](https://huggingface.co/datasets/ajibawa-2023/SlimOrca-ShareGPT).
414
+
415
+ All the credit goes to the Open-Orca team for releasing SlimOrca dataset.
416
+
417
+
418
+ **Training:**
419
+ Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took almost 11 Days. DeepSpeed codebase was used for training purpose.
420
+ Entire data is trained on Llama-2 by Meta.
421
+
422
+ This is a full fine tuned model. Links for quantized models are given below.
423
+
424
+ **GPTQ GGML & AWQ**
425
+
426
+ GPTQ: TBA
427
+
428
+ GGUF: TBA
429
+
430
+ AWQ: TBA
431
+
432
+
433
+
434
+ **Example Prompt:**
435
+ ```
436
+ This is a conversation with your Assistant. It is a computer program designed to help you with various tasks such as answering questions, providing recommendations, and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information.
437
+
438
+ Context
439
+ You are a helpful AI assistant.
440
+
441
+ USER: <prompt>
442
+ ASSISTANT:
443
+ ```
444
+ You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .
445
+
446
+
447
+ I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
448
+
449
+ Thank you for your love & support.
450
+
451
+
452
+ **Example Output**
453
+
454
+ Example 1
455
+
456
+ ![Example 1](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/hM_EJaSZiMjMQU35EiHGM.png)
457
+
458
+ Example 2
459
+
460
+ ![Example 2](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/riNaxJeTWdCEE4dNP8GWp.png)
461
+
462
+