TheBloke commited on
Commit
a620e90
1 Parent(s): 7fc425d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +447 -0
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
3
+ inference: false
4
+ license: mit
5
+ model_creator: SciPhi-AI
6
+ model_name: SciPhi Self RAG Mistral 7B 32K
7
+ model_type: mistral
8
+ prompt_template: '### System:
9
+
10
+ {system_message}
11
+
12
+
13
+ ### Instruction:
14
+
15
+ {prompt}
16
+
17
+
18
+ ### Response:
19
+
20
+ '
21
+ quantized_by: TheBloke
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # SciPhi Self RAG Mistral 7B 32K - AWQ
43
+ - Model creator: [SciPhi-AI](https://huggingface.co/SciPhi)
44
+ - Original model: [SciPhi Self RAG Mistral 7B 32K](https://huggingface.co/SciPhi/SciPhi-Self-RAG-Mistral-7B-32k)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains AWQ model files for [SciPhi-AI's SciPhi Self RAG Mistral 7B 32K](https://huggingface.co/SciPhi/SciPhi-Self-RAG-Mistral-7B-32k).
50
+
51
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
52
+
53
+
54
+ ### About AWQ
55
+
56
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
57
+
58
+ It is supported by:
59
+
60
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
61
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
62
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
63
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
64
+
65
+ <!-- description end -->
66
+ <!-- repositories-available start -->
67
+ ## Repositories available
68
+
69
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ)
70
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-GPTQ)
71
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-GGUF)
72
+ * [SciPhi-AI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SciPhi/SciPhi-Self-RAG-Mistral-7B-32k)
73
+ <!-- repositories-available end -->
74
+
75
+ <!-- prompt-template start -->
76
+ ## Prompt template: SciPhi
77
+
78
+ ```
79
+ ### System:
80
+ {system_message}
81
+
82
+ ### Instruction:
83
+ {prompt}
84
+
85
+ ### Response:
86
+
87
+ ```
88
+
89
+ <!-- prompt-template end -->
90
+
91
+
92
+ <!-- README_AWQ.md-provided-files start -->
93
+ ## Provided files, and AWQ parameters
94
+
95
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
96
+
97
+ Models are released as sharded safetensors files.
98
+
99
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
100
+ | ------ | ---- | -- | ----------- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB
102
+
103
+ <!-- README_AWQ.md-provided-files end -->
104
+
105
+ <!-- README_AWQ.md-text-generation-webui start -->
106
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
107
+
108
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
+
110
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
111
+
112
+ 1. Click the **Model tab**.
113
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ`.
114
+ 3. Click **Download**.
115
+ 4. The model will start downloading. Once it's finished it will say "Done".
116
+ 5. In the top left, click the refresh icon next to **Model**.
117
+ 6. In the **Model** dropdown, choose the model you just downloaded: `SciPhi-Self-RAG-Mistral-7B-32k-AWQ`
118
+ 7. Select **Loader: AutoAWQ**.
119
+ 8. Click Load, and the model will load and is now ready for use.
120
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
122
+ <!-- README_AWQ.md-text-generation-webui end -->
123
+
124
+ <!-- README_AWQ.md-use-from-vllm start -->
125
+ ## Multi-user inference server: vLLM
126
+
127
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
128
+
129
+ - Please ensure you are using vLLM version 0.2 or later.
130
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
131
+
132
+ For example:
133
+
134
+ ```shell
135
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ --quantization awq
136
+ ```
137
+
138
+ - When using vLLM from Python code, again set `quantization=awq`.
139
+
140
+ For example:
141
+
142
+ ```python
143
+ from vllm import LLM, SamplingParams
144
+
145
+ prompts = [
146
+ "Tell me about AI",
147
+ "Write a story about llamas",
148
+ "What is 291 - 150?",
149
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
150
+ ]
151
+ prompt_template=f'''### System:
152
+ {system_message}
153
+
154
+ ### Instruction:
155
+ {prompt}
156
+
157
+ ### Response:
158
+ '''
159
+
160
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
161
+
162
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
163
+
164
+ llm = LLM(model="TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ", quantization="awq", dtype="auto")
165
+
166
+ outputs = llm.generate(prompts, sampling_params)
167
+
168
+ # Print the outputs.
169
+ for output in outputs:
170
+ prompt = output.prompt
171
+ generated_text = output.outputs[0].text
172
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
173
+ ```
174
+ <!-- README_AWQ.md-use-from-vllm start -->
175
+
176
+ <!-- README_AWQ.md-use-from-tgi start -->
177
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
178
+
179
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
180
+
181
+ Example Docker parameters:
182
+
183
+ ```shell
184
+ --model-id TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
185
+ ```
186
+
187
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
188
+
189
+ ```shell
190
+ pip3 install huggingface-hub
191
+ ```
192
+
193
+ ```python
194
+ from huggingface_hub import InferenceClient
195
+
196
+ endpoint_url = "https://your-endpoint-url-here"
197
+
198
+ prompt = "Tell me about AI"
199
+ prompt_template=f'''### System:
200
+ {system_message}
201
+
202
+ ### Instruction:
203
+ {prompt}
204
+
205
+ ### Response:
206
+ '''
207
+
208
+ client = InferenceClient(endpoint_url)
209
+ response = client.text_generation(prompt,
210
+ max_new_tokens=128,
211
+ do_sample=True,
212
+ temperature=0.7,
213
+ top_p=0.95,
214
+ top_k=40,
215
+ repetition_penalty=1.1)
216
+
217
+ print(f"Model output: ", response)
218
+ ```
219
+ <!-- README_AWQ.md-use-from-tgi end -->
220
+
221
+ <!-- README_AWQ.md-use-from-python start -->
222
+ ## Inference from Python code using AutoAWQ
223
+
224
+ ### Install the AutoAWQ package
225
+
226
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later.
227
+
228
+ ```shell
229
+ pip3 install autoawq
230
+ ```
231
+
232
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
233
+
234
+ ```shell
235
+ pip3 uninstall -y autoawq
236
+ git clone https://github.com/casper-hansen/AutoAWQ
237
+ cd AutoAWQ
238
+ pip3 install .
239
+ ```
240
+
241
+ ### AutoAWQ example code
242
+
243
+ ```python
244
+ from awq import AutoAWQForCausalLM
245
+ from transformers import AutoTokenizer
246
+
247
+ model_name_or_path = "TheBloke/SciPhi-Self-RAG-Mistral-7B-32k-AWQ"
248
+
249
+ # Load tokenizer
250
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
251
+ # Load model
252
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
253
+ trust_remote_code=False, safetensors=True)
254
+
255
+ prompt = "Tell me about AI"
256
+ prompt_template=f'''### System:
257
+ {system_message}
258
+
259
+ ### Instruction:
260
+ {prompt}
261
+
262
+ ### Response:
263
+ '''
264
+
265
+ print("*** Running model.generate:")
266
+
267
+ token_input = tokenizer(
268
+ prompt_template,
269
+ return_tensors='pt'
270
+ ).input_ids.cuda()
271
+
272
+ # Generate output
273
+ generation_output = model.generate(
274
+ token_input,
275
+ do_sample=True,
276
+ temperature=0.7,
277
+ top_p=0.95,
278
+ top_k=40,
279
+ max_new_tokens=512
280
+ )
281
+
282
+ # Get the tokens from the output, decode them, print them
283
+ token_output = generation_output[0]
284
+ text_output = tokenizer.decode(token_output)
285
+ print("LLM output: ", text_output)
286
+
287
+ """
288
+ # Inference should be possible with transformers pipeline as well in future
289
+ # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023)
290
+ from transformers import pipeline
291
+
292
+ print("*** Pipeline:")
293
+ pipe = pipeline(
294
+ "text-generation",
295
+ model=model,
296
+ tokenizer=tokenizer,
297
+ max_new_tokens=512,
298
+ do_sample=True,
299
+ temperature=0.7,
300
+ top_p=0.95,
301
+ top_k=40,
302
+ repetition_penalty=1.1
303
+ )
304
+
305
+ print(pipe(prompt_template)[0]['generated_text'])
306
+ """
307
+ ```
308
+ <!-- README_AWQ.md-use-from-python end -->
309
+
310
+ <!-- README_AWQ.md-compatibility start -->
311
+ ## Compatibility
312
+
313
+ The files provided are tested to work with:
314
+
315
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
316
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
317
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
318
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
319
+
320
+ <!-- README_AWQ.md-compatibility end -->
321
+
322
+ <!-- footer start -->
323
+ <!-- 200823 -->
324
+ ## Discord
325
+
326
+ For further support, and discussions on these models and AI in general, join us at:
327
+
328
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
329
+
330
+ ## Thanks, and how to contribute
331
+
332
+ Thanks to the [chirper.ai](https://chirper.ai) team!
333
+
334
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
335
+
336
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
337
+
338
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
339
+
340
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
341
+
342
+ * Patreon: https://patreon.com/TheBlokeAI
343
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
344
+
345
+ **Special thanks to**: Aemon Algiz.
346
+
347
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
348
+
349
+
350
+ Thank you to all my generous patrons and donaters!
351
+
352
+ And thank you again to a16z for their generous grant.
353
+
354
+ <!-- footer end -->
355
+
356
+ # Original model card: SciPhi-AI's SciPhi Self RAG Mistral 7B 32K
357
+
358
+
359
+ # SciPhi-Self-RAG-Mistral-7B-32k Model Card
360
+
361
+ SciPhi-Self-RAG-Mistral-7B-32k is a Large Language Model (LLM) fine-tuned from Mistral-7B-v0.1. This model underwent the fine-tuning process described in the [SciPhi-Mistral-7B-32k](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k) model card. It then underwent further fine-tuning on the recently released [self-rag](https://arxiv.org/abs//2310.11511) dataset. Other RAG-related instruct datasets were mixed in during this process in an effort to keep the tone of the current model. This model benchmarks well, but it needs further tuning to be an excellent conversationalist.
362
+
363
+ Benchmark Results:
364
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c806dc4515835c4d7b0b6d/_KV_hXZ0SPkmJUnHudoFz.png)
365
+
366
+ SciPhi-AI is available via a free hosted API, though the exposed model can vary. Currently, SciPhi-Self-RAG-Mistral-7B-32k is available. More details can be found in the docs [here](https://sciphi.readthedocs.io/en/latest/setup/quickstart.html).
367
+
368
+
369
+ ## Recommended Chat Formatting
370
+ ```
371
+
372
+ We recommend mapping such that
373
+
374
+ messages = [
375
+ {
376
+ "role": "system",
377
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
378
+ },
379
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
380
+ ]
381
+
382
+ goes to --->
383
+
384
+ ### System:
385
+ You are a friendly chatbot who always responds in the style of a pirate
386
+
387
+ ### Instruction:
388
+ How many helicopters can a human eat in one sitting?
389
+
390
+ ### Response:
391
+ ...
392
+
393
+ Here is a sample implementation that does this and combines with RAG context retrieval.
394
+
395
+ def get_chat_completion(
396
+ self, conversation: list[dict], generation_config: GenerationConfig
397
+ ) -> str:
398
+ self._check_stop_token(generation_config.stop_token)
399
+ prompt = ""
400
+ added_system_prompt = False
401
+ for message in conversation:
402
+ if message["role"] == "system":
403
+ prompt += f"### System:\n{SciPhiLLMInterface.ALPACA_CHAT_SYSTEM_PROMPT}. Further, the assistant is given the following additional instructions - {message['content']}\n\n"
404
+ added_system_prompt = True
405
+ elif message["role"] == "user":
406
+ last_user_message = message["content"]
407
+ prompt += f"### Instruction:\n{last_user_message}\n\n"
408
+ elif message["role"] == "assistant":
409
+ prompt += f"### Response:\n{message['content']}\n\n"
410
+
411
+ if not added_system_prompt:
412
+ prompt = f"### System:\n{SciPhiLLMInterface.ALPACA_CHAT_SYSTEM_PROMPT}.\n\n{prompt}"
413
+
414
+ context = self.rag_interface.get_contexts([last_user_message])[0]
415
+ prompt += f"### Response:\n{SciPhiFormatter.RETRIEVAL_TOKEN} {SciPhiFormatter.INIT_PARAGRAPH_TOKEN}{context}{SciPhiFormatter.END_PARAGRAPH_TOKEN}"
416
+ latest_completion = self.model.get_instruct_completion(
417
+ prompt, generation_config
418
+ ).strip()
419
+
420
+ return SciPhiFormatter.remove_cruft(latest_completion)
421
+
422
+
423
+ ```
424
+ ## Model Architecture
425
+
426
+ Base Model: Mistral-7B-v0.1
427
+
428
+ **Architecture Features:**
429
+ - Transformer-based model
430
+ - Grouped-Query Attention
431
+ - Sliding-Window Attention
432
+ - Byte-fallback BPE tokenizer
433
+
434
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
435
+
436
+ ## References
437
+
438
+ 1. Asai, A., Wu, Z., Wang, Y., Sil, A., & Hajishirzi, H. (2023). Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection. arXiv preprint arXiv:2310.11511.
439
+ 2. Lian, W., Goodson, B., Wang, G., Pentland, E., Cook, A., Vong, C., & Teknium. (2023). MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset. *HuggingFace repository*. [Link](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
440
+ 3. Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi, H., & Awadallah, A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4. *arXiv preprint arXiv:2306.02707*.
441
+ 4. Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., & Roberts, A. (2023). The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. *arXiv preprint arXiv:2301.13688*.
442
+ 5. Mistral AI. (2023). Model Card for Mistral-7B-v0.1. The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks tested. For full details, please refer to the paper and release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/mistralai/Mistral-7B-v0.1)
443
+
444
+
445
+ ## Acknowledgements
446
+
447
+ Thank you to the [AI Alignment Lab](https://huggingface.co/Alignment-Lab-AI), [vikp](https://huggingface.co/vikp), [jph00](https://huggingface.co/jph00) and others who contributed to this work.