TheBloke commited on
Commit
210a760
1 Parent(s): fa99123

Initial GGML model commit

Browse files
Files changed (1) hide show
  1. README.md +129 -0
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ license: other
4
+ ---
5
+
6
+ <!-- header start -->
7
+ <div style="width: 100%;">
8
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
9
+ </div>
10
+ <div style="display: flex; justify-content: space-between; width: 100%;">
11
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
+ <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
13
+ </div>
14
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
+ </div>
17
+ </div>
18
+ <!-- header end -->
19
+
20
+ # rewoo's Planner 7B GGML
21
+
22
+ These files are GGML format model files for [rewoo's Planner 7B](https://huggingface.co/rewoo/planner_7B).
23
+
24
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
+ * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
+ * [ctransformers](https://github.com/marella/ctransformers)
30
+
31
+ ## Repositories available
32
+
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Planner-7B-GPTQ)
34
+ * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Planner-7B-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/rewoo/planner_7B)
36
+
37
+ ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
38
+
39
+ llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
40
+
41
+ I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
42
+
43
+ ## Provided files
44
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
45
+ | ---- | ---- | ---- | ---- | ---- | ----- |
46
+ | planner-7b.ggmlv3.q4_0.bin | q4_0 | 4 | 3.83 GB | 6.33 GB | 4-bit. |
47
+ | planner-7b.ggmlv3.q4_1.bin | q4_1 | 4 | 4.24 GB | 6.74 GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
48
+ | planner-7b.ggmlv3.q5_0.bin | q5_0 | 5 | 4.65 GB | 7.15 GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
49
+ | planner-7b.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
50
+ | planner-7b.ggmlv3.q8_0.bin | q8_0 | 8 | 7.13 GB | 9.63 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
51
+
52
+
53
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
54
+
55
+ ## How to run in `llama.cpp`
56
+
57
+ I use the following command line; adjust for your tastes and needs:
58
+
59
+ ```
60
+ ./main -t 10 -ngl 32 -m planner-7b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
61
+ ```
62
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
63
+
64
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
65
+
66
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
67
+
68
+ ## How to run in `text-generation-webui`
69
+
70
+ Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
71
+
72
+ <!-- footer start -->
73
+ ## Discord
74
+
75
+ For further support, and discussions on these models and AI in general, join us at:
76
+
77
+ [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
78
+
79
+ ## Thanks, and how to contribute.
80
+
81
+ Thanks to the [chirper.ai](https://chirper.ai) team!
82
+
83
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
84
+
85
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
86
+
87
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
88
+
89
+ * Patreon: https://patreon.com/TheBlokeAI
90
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
91
+
92
+ **Special thanks to**: Luke from CarbonQuill; Aemon Algiz.
93
+
94
+ **Patreon special mentions**: Dmitriy Samsonov, Derek Yates, Sean Connelly, Luke, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, trip7s trip, Jonathan Leane, Talal Aujan, Artur Olbinski, Cory Kujawski, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Johann-Peter Hartmann.
95
+
96
+ Thank you to all my generous patrons and donaters!
97
+
98
+ <!-- footer end -->
99
+
100
+ # Original model card: rewoo's Planner 7B
101
+
102
+
103
+ Alpaca Lora adapter weight fine-tuned on following instruction dataset.
104
+
105
+ https://huggingface.co/datasets/rewoo/planner_instruction_tuning_2k/blob/main/README.md
106
+
107
+ Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation
108
+
109
+ We use following parameter.
110
+
111
+ ```
112
+ python finetune.py \
113
+ --base_model 'decapoda-research/llama-7b-hf' \
114
+ --data_path 'rewoo/planner_instruction_tuning_2k' \
115
+ --output_dir './lora-alpaca-planner' \
116
+ --batch_size 128 \
117
+ --micro_batch_size 8 \
118
+ --num_epochs 10 \
119
+ --learning_rate 1e-4 \
120
+ --cutoff_len 1024 \
121
+ --val_set_size 200 \
122
+ --lora_r 8 \
123
+ --lora_alpha 16 \
124
+ --lora_dropout 0.05 \
125
+ --lora_target_modules '[q_proj,v_proj]' \
126
+ --train_on_inputs \
127
+ --group_by_length \
128
+ --resume_from_checkpoint 'tloen/alpaca-lora-7b'
129
+ ```