Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
awq
TheBloke commited on
Commit
8507182
1 Parent(s): 9cab1e5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +478 -0
README.md ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B
3
+ datasets:
4
+ - garage-bAInd/Open-Platypus
5
+ - Open-Orca/OpenOrca
6
+ inference: false
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ license: cc-by-nc-4.0
11
+ model_creator: Open-Orca
12
+ model_name: OpenOrca Platypus2 13B
13
+ model_type: llama
14
+ pipeline_tag: text-generation
15
+ prompt_template: '### Instruction:
16
+
17
+
18
+ {prompt}
19
+
20
+
21
+ ### Response:
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ ---
26
+
27
+ <!-- header start -->
28
+ <!-- 200823 -->
29
+ <div style="width: auto; margin-left: auto; margin-right: auto">
30
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
31
+ </div>
32
+ <div style="display: flex; justify-content: space-between; width: 100%;">
33
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
35
+ </div>
36
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
37
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
38
+ </div>
39
+ </div>
40
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
41
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
42
+ <!-- header end -->
43
+
44
+ # OpenOrca Platypus2 13B - AWQ
45
+ - Model creator: [Open-Orca](https://huggingface.co/Open-Orca)
46
+ - Original model: [OpenOrca Platypus2 13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B)
47
+
48
+ <!-- description start -->
49
+ ## Description
50
+
51
+ This repo contains AWQ model files for [Open-Orca's OpenOrca Platypus2 13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B).
52
+
53
+
54
+ ### About AWQ
55
+
56
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
57
+
58
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
59
+ <!-- description end -->
60
+ <!-- repositories-available start -->
61
+ ## Repositories available
62
+
63
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-AWQ)
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-GGUF)
66
+ * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B)
67
+ <!-- repositories-available end -->
68
+
69
+ <!-- prompt-template start -->
70
+ ## Prompt template: Alpaca-InstructOnly
71
+
72
+ ```
73
+ ### Instruction:
74
+
75
+ {prompt}
76
+
77
+ ### Response:
78
+
79
+ ```
80
+
81
+ <!-- prompt-template end -->
82
+ <!-- licensing start -->
83
+ ## Licensing
84
+
85
+ The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license.
86
+
87
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
88
+
89
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Open-Orca's OpenOrca Platypus2 13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B).
90
+ <!-- licensing end -->
91
+ <!-- README_AWQ.md-provided-files start -->
92
+ ## Provided files and AWQ parameters
93
+
94
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
95
+
96
+ Models are released as sharded safetensors files.
97
+
98
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
99
+ | ------ | ---- | -- | ----------- | ------- | ---- |
100
+ | [main](https://huggingface.co/TheBloke/OpenOrca-Platypus2-13B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB
101
+
102
+ <!-- README_AWQ.md-provided-files end -->
103
+
104
+ <!-- README_AWQ.md-use-from-vllm start -->
105
+ ## Serving this model from vLLM
106
+
107
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
108
+
109
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
110
+
111
+ ```shell
112
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/OpenOrca-Platypus2-13B-AWQ --quantization awq
113
+ ```
114
+
115
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
116
+
117
+ ```python
118
+ from vllm import LLM, SamplingParams
119
+
120
+ prompts = [
121
+ "Hello, my name is",
122
+ "The president of the United States is",
123
+ "The capital of France is",
124
+ "The future of AI is",
125
+ ]
126
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
127
+
128
+ llm = LLM(model="TheBloke/OpenOrca-Platypus2-13B-AWQ", quantization="awq")
129
+
130
+ outputs = llm.generate(prompts, sampling_params)
131
+
132
+ # Print the outputs.
133
+ for output in outputs:
134
+ prompt = output.prompt
135
+ generated_text = output.outputs[0].text
136
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
137
+ ```
138
+ <!-- README_AWQ.md-use-from-vllm start -->
139
+
140
+ <!-- README_AWQ.md-use-from-python start -->
141
+ ## How to use this AWQ model from Python code
142
+
143
+ ### Install the necessary packages
144
+
145
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
146
+
147
+ ```shell
148
+ pip3 install autoawq
149
+ ```
150
+
151
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
152
+
153
+ ```shell
154
+ pip3 uninstall -y autoawq
155
+ git clone https://github.com/casper-hansen/AutoAWQ
156
+ cd AutoAWQ
157
+ pip3 install .
158
+ ```
159
+
160
+ ### You can then try the following example code
161
+
162
+ ```python
163
+ from awq import AutoAWQForCausalLM
164
+ from transformers import AutoTokenizer
165
+
166
+ model_name_or_path = "TheBloke/OpenOrca-Platypus2-13B-AWQ"
167
+
168
+ # Load model
169
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
170
+ trust_remote_code=False, safetensors=True)
171
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
172
+
173
+ prompt = "Tell me about AI"
174
+ prompt_template=f'''### Instruction:
175
+
176
+ {prompt}
177
+
178
+ ### Response:
179
+
180
+ '''
181
+
182
+ print("\n\n*** Generate:")
183
+
184
+ tokens = tokenizer(
185
+ prompt_template,
186
+ return_tensors='pt'
187
+ ).input_ids.cuda()
188
+
189
+ # Generate output
190
+ generation_output = model.generate(
191
+ tokens,
192
+ do_sample=True,
193
+ temperature=0.7,
194
+ top_p=0.95,
195
+ top_k=40,
196
+ max_new_tokens=512
197
+ )
198
+
199
+ print("Output: ", tokenizer.decode(generation_output[0]))
200
+
201
+ # Inference can also be done using transformers' pipeline
202
+ from transformers import pipeline
203
+
204
+ print("*** Pipeline:")
205
+ pipe = pipeline(
206
+ "text-generation",
207
+ model=model,
208
+ tokenizer=tokenizer,
209
+ max_new_tokens=512,
210
+ do_sample=True,
211
+ temperature=0.7,
212
+ top_p=0.95,
213
+ top_k=40,
214
+ repetition_penalty=1.1
215
+ )
216
+
217
+ print(pipe(prompt_template)[0]['generated_text'])
218
+ ```
219
+ <!-- README_AWQ.md-use-from-python end -->
220
+
221
+ <!-- README_AWQ.md-compatibility start -->
222
+ ## Compatibility
223
+
224
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
225
+
226
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
227
+ <!-- README_AWQ.md-compatibility end -->
228
+
229
+ <!-- footer start -->
230
+ <!-- 200823 -->
231
+ ## Discord
232
+
233
+ For further support, and discussions on these models and AI in general, join us at:
234
+
235
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
236
+
237
+ ## Thanks, and how to contribute
238
+
239
+ Thanks to the [chirper.ai](https://chirper.ai) team!
240
+
241
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
242
+
243
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
244
+
245
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
246
+
247
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
248
+
249
+ * Patreon: https://patreon.com/TheBlokeAI
250
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
251
+
252
+ **Special thanks to**: Aemon Algiz.
253
+
254
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
255
+
256
+
257
+ Thank you to all my generous patrons and donaters!
258
+
259
+ And thank you again to a16z for their generous grant.
260
+
261
+ <!-- footer end -->
262
+
263
+ # Original model card: Open-Orca's OpenOrca Platypus2 13B
264
+
265
+
266
+ <p><h1>🐋 The First OrcaPlatypus! 🐋</h1></p>
267
+
268
+ ![Platty](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypusMerge.jpg)
269
+
270
+
271
+ # OpenOrca-Platypus2-13B
272
+
273
+ OpenOrca-Platypus2-13B is a merge of [`garage-bAInd/Platypus2-13B`](https://huggingface.co/garage-bAInd/Platypus2-13B) and [`Open-Orca/OpenOrcaxOpenChat-Preview2-13B`](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B).
274
+
275
+ This model is more than the sum of its parts! We are happy to be teaming up with the [Platypus](https://platypus-llm.github.io/) team to bring you a new model which once again tops the leaderboards!
276
+
277
+ Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2).
278
+
279
+
280
+ [<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2)
281
+
282
+
283
+ We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.
284
+
285
+ We will also give sneak-peak announcements on our Discord, which you can find here:
286
+
287
+ https://AlignmentLab.ai
288
+
289
+ # Evaluation
290
+
291
+ ## HuggingFace Leaderboard Performance
292
+
293
+ ![HF Leaderboard](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BHFLeaderboard.webp)
294
+
295
+
296
+ | Metric | Value |
297
+ |-----------------------|-------|
298
+ | MMLU (5-shot) | 59.5 |
299
+ | ARC (25-shot) | 62.88 |
300
+ | HellaSwag (10-shot) | 83.19 |
301
+ | TruthfulQA (0-shot) | 52.69 |
302
+ | Avg. | 64.56 |
303
+
304
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
305
+
306
+ Please see below for detailed instructions on reproducing benchmark results.
307
+
308
+
309
+ ## AGIEval Performance
310
+
311
+ We compare our results to our base Preview2 model (using LM Evaluation Harness).
312
+
313
+ We find **112%** of the base model's performance on AGI Eval, averaging **0.463**.
314
+ A large part of this boost is the substantial improvement to LSAT Logical Reasoning performance.
315
+
316
+ ![OpenOrca-Platypus2-13B AGIEval Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BAGIEval.webp "AGIEval Performance")
317
+
318
+ ## BigBench-Hard Performance
319
+
320
+ We compare our results to our base Preview2 model (using LM Evaluation Harness).
321
+
322
+ We find **105%** of the base model's performance on BigBench-Hard, averaging **0.442**.
323
+
324
+ ![OpenOrca-Platypus2-13B BigBench-Hard Performance](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B/resolve/main/Images/OrcaPlatypus13BBigBenchHard.webp "BigBench-Hard Performance")
325
+
326
+
327
+ # Model Details
328
+
329
+ * **Trained by**: **Platypus2-13B** trained by Cole Hunter & Ariel Lee; **OpenOrcaxOpenChat-Preview2-13B** trained by Open-Orca
330
+ * **Model type:** **OpenOrca-Platypus2-13B** is an auto-regressive language model based on the Lllama 2 transformer architecture.
331
+ * **Language(s)**: English
332
+ * **License for Platypus2-13B base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
333
+ * **License for OpenOrcaxOpenChat-Preview2-13B base weights**: Llama 2 Commercial
334
+
335
+
336
+ # Prompting
337
+
338
+ ## Prompt Template for base Platypus2-13B
339
+
340
+ ```
341
+ ### Instruction:
342
+
343
+ <prompt> (without the <>)
344
+
345
+ ### Response:
346
+ ```
347
+
348
+
349
+ ## Prompt Template for base OpenOrcaxOpenChat-Preview2-13B
350
+
351
+ OpenChat Llama2 V1: see [OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) for additional information.
352
+
353
+
354
+ # Training
355
+
356
+ ## Training Datasets
357
+
358
+ `garage-bAInd/Platypus2-13B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
359
+
360
+ Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information.
361
+
362
+ `Open-Orca/OpenOrcaxOpenChat-Preview2-13B` trained using a refined subset of most of the GPT-4 data from the [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca).
363
+
364
+
365
+ ## Training Procedure
366
+
367
+ `Open-Orca/Platypus2-13B` was instruction fine-tuned using LoRA on 1x A100-80GB.
368
+ For training details and inference instructions please see the [Platypus](https://github.com/arielnlee/Platypus) GitHub repo.
369
+
370
+
371
+ # Supplemental
372
+
373
+ ## Reproducing Evaluation Results (for HuggingFace Leaderboard Eval)
374
+
375
+ Install LM Evaluation Harness:
376
+ ```
377
+ # clone repository
378
+ git clone https://github.com/EleutherAI/lm-evaluation-harness.git
379
+ # change to repo directory
380
+ cd lm-evaluation-harness
381
+ # check out the correct commit
382
+ git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
383
+ # install
384
+ pip install -e .
385
+ ```
386
+ Each task was evaluated on a single A100-80GB GPU.
387
+
388
+ ARC:
389
+ ```
390
+ python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/arc_challenge_25shot.json --device cuda --num_fewshot 25
391
+ ```
392
+
393
+ HellaSwag:
394
+ ```
395
+ python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/hellaswag_10shot.json --device cuda --num_fewshot 10
396
+ ```
397
+
398
+ MMLU:
399
+ ```
400
+ python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/mmlu_5shot.json --device cuda --num_fewshot 5
401
+ ```
402
+
403
+ TruthfulQA:
404
+ ```
405
+ python main.py --model hf-causal-experimental --model_args pretrained=Open-Orca/OpenOrca-Platypus2-13B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/OpenOrca-Platypus2-13B/truthfulqa_0shot.json --device cuda
406
+ ```
407
+
408
+
409
+ ## Limitations and bias
410
+
411
+ Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
412
+
413
+ Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
414
+
415
+
416
+ # Citations
417
+
418
+ ```bibtex
419
+ @software{hunterlee2023orcaplaty1
420
+ title = {OpenOrcaPlatypus: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset and Merged with divergent STEM and Logic Dataset Model},
421
+ author = {Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz and Bleys Goodson and Wing Lian and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
422
+ year = {2023},
423
+ publisher = {HuggingFace},
424
+ journal = {HuggingFace repository},
425
+ howpublished = {\url{https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B},
426
+ }
427
+ @article{platypus2023,
428
+ title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
429
+ author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
430
+ booktitle={arXiv preprint arxiv:2308.07317},
431
+ year={2023}
432
+ }
433
+ @software{OpenOrcaxOpenChatPreview2,
434
+ title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
435
+ author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
436
+ year = {2023},
437
+ publisher = {HuggingFace},
438
+ journal = {HuggingFace repository},
439
+ howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
440
+ }
441
+ @software{openchat,
442
+ title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
443
+ author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
444
+ doi = {10.5281/zenodo.8105775},
445
+ url = {https://github.com/imoneoi/openchat},
446
+ version = {pre-release},
447
+ year = {2023},
448
+ month = {7},
449
+ }
450
+ @misc{mukherjee2023orca,
451
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
452
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
453
+ year={2023},
454
+ eprint={2306.02707},
455
+ archivePrefix={arXiv},
456
+ primaryClass={cs.CL}
457
+ }
458
+ @misc{touvron2023llama,
459
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
460
+ author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
461
+ year={2023},
462
+ eprint= arXiv 2307.09288
463
+ }
464
+ @misc{longpre2023flan,
465
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
466
+ author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
467
+ year={2023},
468
+ eprint={2301.13688},
469
+ archivePrefix={arXiv},
470
+ primaryClass={cs.AI}
471
+ }
472
+ @article{hu2021lora,
473
+ title={LoRA: Low-Rank Adaptation of Large Language Models},
474
+ author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
475
+ journal={CoRR},
476
+ year={2021}
477
+ }
478
+ ```