TheBloke commited on
Commit
3d0b4fe
1 Parent(s): daa84f9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +408 -0
README.md ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/Open-Orca/LlongOrca-7B-16k
3
+ datasets:
4
+ - Open-Orca/OpenOrca
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: llama2
10
+ model_creator: Open-Orca
11
+ model_name: LlongOrca 7B 16K
12
+ model_type: llama
13
+ pipeline_tag: text-generation
14
+ prompt_template: '<|im_start|>system
15
+
16
+ {system_message}<|im_end|>
17
+
18
+ <|im_start|>user
19
+
20
+ {prompt}<|im_end|>
21
+
22
+ <|im_start|>assistant
23
+
24
+ '
25
+ quantized_by: TheBloke
26
+ ---
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # LlongOrca 7B 16K - AWQ
46
+ - Model creator: [Open-Orca](https://huggingface.co/Open-Orca)
47
+ - Original model: [LlongOrca 7B 16K](https://huggingface.co/Open-Orca/LlongOrca-7B-16k)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains AWQ model files for [Open-Orca's LlongOrca 7B 16K](https://huggingface.co/Open-Orca/LlongOrca-7B-16k).
53
+
54
+
55
+ ### About AWQ
56
+
57
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
58
+
59
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
60
+ <!-- description end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGUF)
67
+ * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-7B-16k)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: ChatML
72
+
73
+ ```
74
+ <|im_start|>system
75
+ {system_message}<|im_end|>
76
+ <|im_start|>user
77
+ {prompt}<|im_end|>
78
+ <|im_start|>assistant
79
+
80
+ ```
81
+
82
+ <!-- prompt-template end -->
83
+
84
+
85
+ <!-- README_AWQ.md-provided-files start -->
86
+ ## Provided files and AWQ parameters
87
+
88
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
89
+
90
+ Models are released as sharded safetensors files.
91
+
92
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
93
+ | ------ | ---- | -- | ----------- | ------- | ---- |
94
+ | [main](https://huggingface.co/TheBloke/LlongOrca-7B-16K-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.89 GB
95
+
96
+ <!-- README_AWQ.md-provided-files end -->
97
+
98
+ <!-- README_AWQ.md-use-from-vllm start -->
99
+ ## Serving this model from vLLM
100
+
101
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
102
+
103
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
104
+
105
+ ```shell
106
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/LlongOrca-7B-16K-AWQ --quantization awq
107
+ ```
108
+
109
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
110
+
111
+ ```python
112
+ from vllm import LLM, SamplingParams
113
+
114
+ prompts = [
115
+ "Hello, my name is",
116
+ "The president of the United States is",
117
+ "The capital of France is",
118
+ "The future of AI is",
119
+ ]
120
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
121
+
122
+ llm = LLM(model="TheBloke/LlongOrca-7B-16K-AWQ", quantization="awq")
123
+
124
+ outputs = llm.generate(prompts, sampling_params)
125
+
126
+ # Print the outputs.
127
+ for output in outputs:
128
+ prompt = output.prompt
129
+ generated_text = output.outputs[0].text
130
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
131
+ ```
132
+ <!-- README_AWQ.md-use-from-vllm start -->
133
+
134
+ <!-- README_AWQ.md-use-from-python start -->
135
+ ## How to use this AWQ model from Python code
136
+
137
+ ### Install the necessary packages
138
+
139
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
140
+
141
+ ```shell
142
+ pip3 install autoawq
143
+ ```
144
+
145
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
146
+
147
+ ```shell
148
+ pip3 uninstall -y autoawq
149
+ git clone https://github.com/casper-hansen/AutoAWQ
150
+ cd AutoAWQ
151
+ pip3 install .
152
+ ```
153
+
154
+ ### You can then try the following example code
155
+
156
+ ```python
157
+ from awq import AutoAWQForCausalLM
158
+ from transformers import AutoTokenizer
159
+
160
+ model_name_or_path = "TheBloke/LlongOrca-7B-16K-AWQ"
161
+
162
+ # Load model
163
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
164
+ trust_remote_code=False, safetensors=True)
165
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
166
+
167
+ prompt = "Tell me about AI"
168
+ prompt_template=f'''<|im_start|>system
169
+ {system_message}<|im_end|>
170
+ <|im_start|>user
171
+ {prompt}<|im_end|>
172
+ <|im_start|>assistant
173
+
174
+ '''
175
+
176
+ print("\n\n*** Generate:")
177
+
178
+ tokens = tokenizer(
179
+ prompt_template,
180
+ return_tensors='pt'
181
+ ).input_ids.cuda()
182
+
183
+ # Generate output
184
+ generation_output = model.generate(
185
+ tokens,
186
+ do_sample=True,
187
+ temperature=0.7,
188
+ top_p=0.95,
189
+ top_k=40,
190
+ max_new_tokens=512
191
+ )
192
+
193
+ print("Output: ", tokenizer.decode(generation_output[0]))
194
+
195
+ # Inference can also be done using transformers' pipeline
196
+ from transformers import pipeline
197
+
198
+ print("*** Pipeline:")
199
+ pipe = pipeline(
200
+ "text-generation",
201
+ model=model,
202
+ tokenizer=tokenizer,
203
+ max_new_tokens=512,
204
+ do_sample=True,
205
+ temperature=0.7,
206
+ top_p=0.95,
207
+ top_k=40,
208
+ repetition_penalty=1.1
209
+ )
210
+
211
+ print(pipe(prompt_template)[0]['generated_text'])
212
+ ```
213
+ <!-- README_AWQ.md-use-from-python end -->
214
+
215
+ <!-- README_AWQ.md-compatibility start -->
216
+ ## Compatibility
217
+
218
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
219
+
220
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
221
+ <!-- README_AWQ.md-compatibility end -->
222
+
223
+ <!-- footer start -->
224
+ <!-- 200823 -->
225
+ ## Discord
226
+
227
+ For further support, and discussions on these models and AI in general, join us at:
228
+
229
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
230
+
231
+ ## Thanks, and how to contribute
232
+
233
+ Thanks to the [chirper.ai](https://chirper.ai) team!
234
+
235
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
236
+
237
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
238
+
239
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
240
+
241
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
242
+
243
+ * Patreon: https://patreon.com/TheBlokeAI
244
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
245
+
246
+ **Special thanks to**: Aemon Algiz.
247
+
248
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
249
+
250
+
251
+ Thank you to all my generous patrons and donaters!
252
+
253
+ And thank you again to a16z for their generous grant.
254
+
255
+ <!-- footer end -->
256
+
257
+ # Original model card: Open-Orca's LlongOrca 7B 16K
258
+
259
+
260
+ <p><h1>🐋 The First Llong Context Orca! 🐋</h1></p>
261
+
262
+
263
+ ![OpenOrca Logo](https://huggingface.co/datasets/Open-Orca/OpenOrca/resolve/main/OpenOrcaLogo.png "OpenOrca Logo")
264
+
265
+
266
+ # OpenOrca - LlongOrca - 7B - 16k
267
+
268
+ We have used our own [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca) to fine-tune on top of [LLongMA-2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k).
269
+ This dataset is our attempt to reproduce the dataset generated for Microsoft Research's [Orca Paper](https://arxiv.org/abs/2306.02707).
270
+ We use [OpenChat](https://huggingface.co/openchat) packing, trained with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
271
+
272
+ This release is trained on a curated filtered subset of most of our GPT-4 augmented data.
273
+ It is the same subset of our data as was used in our [OpenOrcaxOpenChat-Preview2-13B model](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B).
274
+
275
+ This release reveals that stacking our training on an existing long context fine-tuned model yields significant improvements to model performance.
276
+ We measured this with BigBench-Hard and AGIEval results, finding **~134%** of the base Llongma2-16k model's performance on average.
277
+
278
+ We have run extensive evaluations internally and expect this model to place number 4 on the HuggingFaceH4 Open LLM Leaderboard for 7B models, but with >99% performance of the first place and **place number 1** for longer context 7B models.
279
+
280
+ We did this training as part of testing integration of OpenChat's [MultiPack algorithm](https://github.com/imoneoi/multipack_sampler) into the Axolotl trainer.
281
+ MultiPack achieves 99.85% bin-packing efficiency on our dataset.
282
+ This has significantly reduced training time, with efficiency improvement of 3-10X over traditional methods.
283
+
284
+
285
+ <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 300px">
286
+
287
+
288
+ Want to visualize our full (pre-filtering) dataset? Check out our [Nomic Atlas Map](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2).
289
+
290
+
291
+ [<img src="https://huggingface.co/Open-Orca/OpenOrca-Preview1-13B/resolve/main/OpenOrca%20Nomic%20Atlas.png" alt="Atlas Nomic Dataset Map" width="400" height="400" />](https://atlas.nomic.ai/map/c1b88b47-2d9b-47e0-9002-b80766792582/2560fd25-52fe-42f1-a58f-ff5eccc890d2)
292
+
293
+
294
+ Many thanks to @EnricoShippole, @theemozilla, and @kaiokendev1 for the fine work on creating the LlongMA-2-7b-16k model this was trained on top of!
295
+
296
+ We are in-process with training more models, so keep a look out on our org for releases coming soon with exciting partners.
297
+
298
+ We will also give sneak-peak announcements on our Discord, which you can find here:
299
+
300
+ https://AlignmentLab.ai
301
+
302
+ # Prompt Template
303
+
304
+ We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
305
+
306
+ ## Example Prompt Exchange
307
+
308
+ ```
309
+ <|im_start|>system
310
+ You are LlongOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!
311
+ <|im_end|>
312
+ <|im_start|>user
313
+ How are you<|im_end|>
314
+ <|im_start|>assistant
315
+ I am doing well!<|im_end|>
316
+ <|im_start|>user
317
+ How are you now?<|im_end|>
318
+ ```
319
+
320
+
321
+ # Evaluation
322
+
323
+ We have evaluated using the methodology and tools for the HuggingFace Leaderboard, and find that we have significantly improved upon the base long context model.
324
+ As well, we should place #4 among all 7B models (and #1 for a model with long context) at release time!
325
+
326
+ ## AGIEval Performance
327
+
328
+ We present our performance on AGI Eval in comparison to base Llama2-7B and to [Llongma2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k), which we trained on top of.
329
+ This demonstrates the benefits of stacking OpenOrca dataset training on existing models.
330
+ Most notably, there is a very dramatic improvement of nearly 3X in the English writing performance.
331
+
332
+ ![LlongOrca 7B 16k AGIEval Performance](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/resolve/main/Images/LlongOrca7BAGIEval.png "AGIEval Performance")
333
+
334
+ ## BigBench-Hard Performance
335
+
336
+ We present our performance on BigBench-Hard in comparison to base Llama2-7B and to [Llongma2-7b-16k](https://huggingface.co/conceptofmind/LLongMA-2-7b-16k), which we trained on top of.
337
+ This demonstrates the benefits of stacking OpenOrca dataset training on existing models.
338
+
339
+ ![LlongOrca 7B 16k BigBench-Hard Performance](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/resolve/main/Images/LlongOrca7BBigBenchHard.png "BigBench-Hard Performance")
340
+
341
+ ## HuggingFaceH4 Open LLM Leaderboard Performance
342
+
343
+ We have run our own tests using parameters matching the [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) evals.
344
+
345
+ We place #4 for all 7B models at release time, and #1 for long context models.
346
+
347
+ ![LlongOrca 7B 16k Leaderboard Internal Performance](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/resolve/main/Images/LlongOrca7BHFLeaderboard.png "HuggingFace Leaderboard Internal Performance")
348
+
349
+
350
+ # Dataset
351
+
352
+ We used a curated, filtered selection of most of the GPT-4 augmented data from our OpenOrca dataset, which aims to reproduce the Orca Research Paper dataset.
353
+ Further details of our curation practices will be forthcoming with our full model releases.
354
+
355
+
356
+ # Training
357
+
358
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
359
+
360
+ We trained with 8x A6000-48GB (first-gen) GPUs for 37 hours, completing 4 epochs of full fine tuning on our dataset in one training run.
361
+ Commodity cost was ~$200.
362
+ Axolotl training parameters can be found in [configs/oo7b.yml](https://huggingface.co/Open-Orca/LlongOrca-7B-16k/blob/main/configs/oo-7b.yml).
363
+ We used the `packing-attn` branch of Axolotl during training.
364
+
365
+ # Citation
366
+
367
+ ```bibtex
368
+ @software{lian2023llongorca7b,
369
+ title = {LlongOrca7B: Llama2-7B Model Instruct-tuned for Long Context on Filtered OpenOrcaV1 GPT-4 Dataset},
370
+ author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
371
+ year = {2023},
372
+ publisher = {HuggingFace},
373
+ journal = {HuggingFace repository},
374
+ howpublished = {\url{https://https://huggingface.co/Open-Orca/LlongOrca-7B-16k},
375
+ }
376
+ @software{openchat,
377
+ title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
378
+ author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
379
+ doi = {10.5281/zenodo.8105775},
380
+ url = {https://github.com/imoneoi/openchat},
381
+ version = {pre-release},
382
+ year = {2023},
383
+ month = {7},
384
+ }
385
+ @misc{mukherjee2023orca,
386
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
387
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
388
+ year={2023},
389
+ eprint={2306.02707},
390
+ archivePrefix={arXiv},
391
+ primaryClass={cs.CL}
392
+ }
393
+ @misc{longpre2023flan,
394
+ title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
395
+ author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
396
+ year={2023},
397
+ eprint={2301.13688},
398
+ archivePrefix={arXiv},
399
+ primaryClass={cs.AI}
400
+ }
401
+ @misc{touvron2023llama,
402
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
403
+ author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
404
+ year={2023},
405
+ eprint={2307.09288},
406
+ archivePrefix={arXiv},
407
+ }
408
+ ```