Upload README.md
Browse files
README.md
CHANGED
@@ -1,19 +1,21 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
language:
|
3 |
- en
|
4 |
- de
|
5 |
- es
|
6 |
- fr
|
7 |
license: unknown
|
8 |
-
datasets:
|
9 |
-
- tiiuae/falcon-refinedweb
|
10 |
-
model_name: Falcon 180B
|
11 |
-
inference: false
|
12 |
model_creator: Technology Innovation Institute
|
13 |
-
|
14 |
model_type: falcon
|
|
|
|
|
|
|
15 |
quantized_by: TheBloke
|
16 |
-
base_model: tiiuae/falcon-180B
|
17 |
---
|
18 |
|
19 |
<!-- header start -->
|
@@ -37,23 +39,25 @@ base_model: tiiuae/falcon-180B
|
|
37 |
- Model creator: [Technology Innovation Institute](https://huggingface.co/tiiuae)
|
38 |
- Original model: [Falcon 180B](https://huggingface.co/tiiuae/falcon-180B)
|
39 |
|
|
|
40 |
## Description
|
41 |
|
42 |
This repo contains GGUF format model files for [Technology Innovation Institute's Falcon 180B](https://huggingface.co/tiiuae/falcon-180B).
|
43 |
|
|
|
44 |
<!-- README_GGUF.md-about-gguf start -->
|
45 |
### About GGUF
|
46 |
|
47 |
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
* [
|
53 |
-
* [
|
54 |
-
* [
|
55 |
-
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
|
56 |
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
|
|
|
57 |
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
|
58 |
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
|
59 |
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
|
@@ -76,12 +80,14 @@ Here are a list of clients and libraries that are known to support GGUF:
|
|
76 |
```
|
77 |
|
78 |
<!-- prompt-template end -->
|
|
|
|
|
79 |
<!-- compatibility_gguf start -->
|
80 |
## Compatibility
|
81 |
|
82 |
-
These quantised
|
83 |
|
84 |
-
They are
|
85 |
|
86 |
## Explanation of quantisation methods
|
87 |
<details>
|
@@ -154,21 +160,75 @@ del falcon-180b.Q8_0.gguf-split-a falcon-180b.Q8_0.gguf-split-b
|
|
154 |
</details>
|
155 |
<!-- README_GGUF.md-provided-files end -->
|
156 |
|
157 |
-
<!-- README_GGUF.md-how-to-
|
158 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
|
|
|
|
|
164 |
```
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
```
|
167 |
-
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
|
168 |
|
169 |
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
170 |
|
171 |
-
Change `-c
|
172 |
|
173 |
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
174 |
|
@@ -182,35 +242,37 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
|
|
182 |
|
183 |
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
|
184 |
|
185 |
-
### How to load this model
|
186 |
|
187 |
#### First install the package
|
188 |
|
189 |
-
|
|
|
|
|
190 |
# Base ctransformers with no GPU acceleration
|
191 |
-
pip install ctransformers
|
192 |
# Or with CUDA GPU acceleration
|
193 |
-
pip install ctransformers[cuda]
|
194 |
-
# Or with ROCm GPU acceleration
|
195 |
-
CT_HIPBLAS=1 pip install ctransformers
|
196 |
-
# Or with Metal GPU acceleration for macOS systems
|
197 |
-
CT_METAL=1 pip install ctransformers
|
198 |
```
|
199 |
|
200 |
-
#### Simple example code
|
201 |
|
202 |
```python
|
203 |
from ctransformers import AutoModelForCausalLM
|
204 |
|
205 |
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
206 |
-
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Falcon-180B-GGUF", model_file="falcon-180b.
|
207 |
|
208 |
print(llm("AI is going to"))
|
209 |
```
|
210 |
|
211 |
## How to use with LangChain
|
212 |
|
213 |
-
Here
|
214 |
|
215 |
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
|
216 |
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
|
@@ -225,10 +287,12 @@ For further support, and discussions on these models and AI in general, join us
|
|
225 |
|
226 |
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
227 |
|
228 |
-
## Thanks, and how to contribute
|
229 |
|
230 |
Thanks to the [chirper.ai](https://chirper.ai) team!
|
231 |
|
|
|
|
|
232 |
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
233 |
|
234 |
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
@@ -240,7 +304,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
240 |
|
241 |
**Special thanks to**: Aemon Algiz.
|
242 |
|
243 |
-
**Patreon special mentions**:
|
244 |
|
245 |
|
246 |
Thank you to all my generous patrons and donaters!
|
|
|
1 |
---
|
2 |
+
base_model: tiiuae/falcon-180B
|
3 |
+
datasets:
|
4 |
+
- tiiuae/falcon-refinedweb
|
5 |
+
inference: false
|
6 |
language:
|
7 |
- en
|
8 |
- de
|
9 |
- es
|
10 |
- fr
|
11 |
license: unknown
|
|
|
|
|
|
|
|
|
12 |
model_creator: Technology Innovation Institute
|
13 |
+
model_name: Falcon 180B
|
14 |
model_type: falcon
|
15 |
+
prompt_template: '{prompt}
|
16 |
+
|
17 |
+
'
|
18 |
quantized_by: TheBloke
|
|
|
19 |
---
|
20 |
|
21 |
<!-- header start -->
|
|
|
39 |
- Model creator: [Technology Innovation Institute](https://huggingface.co/tiiuae)
|
40 |
- Original model: [Falcon 180B](https://huggingface.co/tiiuae/falcon-180B)
|
41 |
|
42 |
+
<!-- description start -->
|
43 |
## Description
|
44 |
|
45 |
This repo contains GGUF format model files for [Technology Innovation Institute's Falcon 180B](https://huggingface.co/tiiuae/falcon-180B).
|
46 |
|
47 |
+
<!-- description end -->
|
48 |
<!-- README_GGUF.md-about-gguf start -->
|
49 |
### About GGUF
|
50 |
|
51 |
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
|
52 |
|
53 |
+
Here is an incomplate list of clients and libraries that are known to support GGUF:
|
54 |
|
55 |
+
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
|
56 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
|
57 |
+
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
|
58 |
+
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
|
|
|
59 |
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
|
60 |
+
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
|
61 |
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
|
62 |
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
|
63 |
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
|
|
|
80 |
```
|
81 |
|
82 |
<!-- prompt-template end -->
|
83 |
+
|
84 |
+
|
85 |
<!-- compatibility_gguf start -->
|
86 |
## Compatibility
|
87 |
|
88 |
+
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
|
89 |
|
90 |
+
They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
|
91 |
|
92 |
## Explanation of quantisation methods
|
93 |
<details>
|
|
|
160 |
</details>
|
161 |
<!-- README_GGUF.md-provided-files end -->
|
162 |
|
163 |
+
<!-- README_GGUF.md-how-to-download start -->
|
164 |
+
## How to download GGUF files
|
165 |
+
|
166 |
+
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
|
167 |
+
|
168 |
+
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
|
169 |
+
- LM Studio
|
170 |
+
- LoLLMS Web UI
|
171 |
+
- Faraday.dev
|
172 |
+
|
173 |
+
### In `text-generation-webui`
|
174 |
+
|
175 |
+
Under Download Model, you can enter the model repo: TheBloke/Falcon-180B-GGUF and below it, a specific filename to download, such as: falcon-180b.Q4_K_M.gguf.
|
176 |
+
|
177 |
+
Then click Download.
|
178 |
+
|
179 |
+
### On the command line, including multiple files at once
|
180 |
+
|
181 |
+
I recommend using the `huggingface-hub` Python library:
|
182 |
|
183 |
+
```shell
|
184 |
+
pip3 install huggingface-hub
|
185 |
+
```
|
186 |
+
|
187 |
+
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
188 |
+
|
189 |
+
```shell
|
190 |
+
huggingface-cli download TheBloke/Falcon-180B-GGUF falcon-180b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
191 |
+
```
|
192 |
+
|
193 |
+
<details>
|
194 |
+
<summary>More advanced huggingface-cli download usage</summary>
|
195 |
+
|
196 |
+
You can also download multiple files at once with a pattern:
|
197 |
+
|
198 |
+
```shell
|
199 |
+
huggingface-cli download TheBloke/Falcon-180B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
|
200 |
+
```
|
201 |
+
|
202 |
+
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
|
203 |
+
|
204 |
+
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
|
205 |
|
206 |
+
```shell
|
207 |
+
pip3 install hf_transfer
|
208 |
+
```
|
209 |
+
|
210 |
+
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
211 |
|
212 |
+
```shell
|
213 |
+
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Falcon-180B-GGUF falcon-180b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
214 |
```
|
215 |
+
|
216 |
+
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
|
217 |
+
</details>
|
218 |
+
<!-- README_GGUF.md-how-to-download end -->
|
219 |
+
|
220 |
+
<!-- README_GGUF.md-how-to-run start -->
|
221 |
+
## Example `llama.cpp` command
|
222 |
+
|
223 |
+
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
|
224 |
+
|
225 |
+
```shell
|
226 |
+
./main -ngl 32 -m falcon-180b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
|
227 |
```
|
|
|
228 |
|
229 |
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
230 |
|
231 |
+
Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
|
232 |
|
233 |
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
234 |
|
|
|
242 |
|
243 |
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
|
244 |
|
245 |
+
### How to load this model in Python code, using ctransformers
|
246 |
|
247 |
#### First install the package
|
248 |
|
249 |
+
Run one of the following commands, according to your system:
|
250 |
+
|
251 |
+
```shell
|
252 |
# Base ctransformers with no GPU acceleration
|
253 |
+
pip install ctransformers
|
254 |
# Or with CUDA GPU acceleration
|
255 |
+
pip install ctransformers[cuda]
|
256 |
+
# Or with AMD ROCm GPU acceleration (Linux only)
|
257 |
+
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
|
258 |
+
# Or with Metal GPU acceleration for macOS systems only
|
259 |
+
CT_METAL=1 pip install ctransformers --no-binary ctransformers
|
260 |
```
|
261 |
|
262 |
+
#### Simple ctransformers example code
|
263 |
|
264 |
```python
|
265 |
from ctransformers import AutoModelForCausalLM
|
266 |
|
267 |
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
|
268 |
+
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Falcon-180B-GGUF", model_file="falcon-180b.Q4_K_M.gguf", model_type="falcon", gpu_layers=50)
|
269 |
|
270 |
print(llm("AI is going to"))
|
271 |
```
|
272 |
|
273 |
## How to use with LangChain
|
274 |
|
275 |
+
Here are guides on using llama-cpp-python and ctransformers with LangChain:
|
276 |
|
277 |
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
|
278 |
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
|
|
|
287 |
|
288 |
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
289 |
|
290 |
+
## Thanks, and how to contribute
|
291 |
|
292 |
Thanks to the [chirper.ai](https://chirper.ai) team!
|
293 |
|
294 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
295 |
+
|
296 |
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
297 |
|
298 |
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
|
|
304 |
|
305 |
**Special thanks to**: Aemon Algiz.
|
306 |
|
307 |
+
**Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
|
308 |
|
309 |
|
310 |
Thank you to all my generous patrons and donaters!
|