TheBloke commited on
Commit
9ea7553
·
1 Parent(s): 1d45e57

GPTQ model commit

Browse files
Files changed (1) hide show
  1. modeling_llama.py +1377 -0
modeling_llama.py ADDED
@@ -0,0 +1,1377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
32
+ SequenceClassifierOutputWithPast
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, \
35
+ replace_return_docstrings
36
+ from .configuration_llama import LlamaConfig
37
+
38
+ try:
39
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func
40
+ from flash_attn.modules.mha import FlashSelfAttention
41
+ from einops import rearrange
42
+
43
+ have_flash_attention = True
44
+ except:
45
+ have_flash_attention = False
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ _CONFIG_FOR_DOC = "LlamaConfig"
50
+
51
+
52
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
53
+ def _make_causal_mask(
54
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
55
+ ):
56
+ """
57
+ Make causal mask used for bi-directional self-attention.
58
+ """
59
+ bsz, tgt_len = input_ids_shape
60
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
61
+ mask_cond = torch.arange(mask.size(-1), device=device)
62
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
63
+ mask = mask.to(dtype)
64
+
65
+ if past_key_values_length > 0:
66
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
67
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
68
+
69
+
70
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ bsz, src_len = mask.size()
76
+ tgt_len = tgt_len if tgt_len is not None else src_len
77
+
78
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+
80
+ inverted_mask = 1.0 - expanded_mask
81
+
82
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
83
+
84
+
85
+ def _ntk_find_correction_factor(num_rotations, dim, base=10000, max_position_embeddings=2048):
86
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
87
+ 2 * math.log(base)) # Inverse dim formula to find number of rotations
88
+
89
+
90
+ def _ntk_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
91
+ low = math.floor(_ntk_find_correction_factor(low_rot, dim, base, max_position_embeddings))
92
+ high = math.ceil(_ntk_find_correction_factor(high_rot, dim, base, max_position_embeddings))
93
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
94
+
95
+
96
+ def _ntk_linear_ramp_mask(min, max, dim):
97
+ if min == max:
98
+ max += 0.001 # Prevent singularity
99
+
100
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
101
+ ramp_func = torch.clamp(linear_func, 0, 1)
102
+ return ramp_func
103
+
104
+
105
+ def _ntk_find_newbase_ntk(dim, base=10000, scale=1):
106
+ return base * scale ** (dim / (dim - 2))
107
+
108
+
109
+ def _ntk_build_inv_freq(dim, base, scaling_factor, ntk_factor, extrapolation_factor, original_max_position_embeddings,
110
+ device):
111
+ # Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
112
+ # Do not change unless there is a good reason for doing so!
113
+ beta_0 = 1.25
114
+ beta_1 = 0.75
115
+ gamma_0 = 16
116
+ gamma_1 = 2
117
+
118
+ # Three RoPE extrapolation/interpolation methods
119
+ inv_freq_base = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
120
+ inv_freq_linear = 1.0 / (scaling_factor * (base ** (torch.arange(0, dim, 2).float().to(device) / dim)))
121
+ inv_freq_ntk = 1.0 / (
122
+ _ntk_find_newbase_ntk(dim, base, scaling_factor) ** (torch.arange(0, dim, 2).float().to(device) / dim))
123
+
124
+ current_dtype = inv_freq_ntk.dtype
125
+ current_device = inv_freq_ntk.device
126
+
127
+ # Combine NTK and Linear
128
+ low, high = _ntk_find_correction_range(beta_0, beta_1, dim, base, original_max_position_embeddings)
129
+ inv_freq_mask = (1 - _ntk_linear_ramp_mask(low, high, dim // 2).type(current_dtype).to(current_device)) * ntk_factor
130
+ inv_freq = inv_freq_linear * (1 - inv_freq_mask) + inv_freq_ntk * inv_freq_mask
131
+
132
+ # Combine Extrapolation and NTK and Linear
133
+ low, high = _ntk_find_correction_range(gamma_0, gamma_1, dim, base, original_max_position_embeddings)
134
+ inv_freq_mask = (1 - _ntk_linear_ramp_mask(low, high, dim // 2).type(current_dtype).to(
135
+ current_device)) * extrapolation_factor
136
+ return inv_freq * (1 - inv_freq_mask) + inv_freq_base * inv_freq_mask
137
+
138
+
139
+ # Inverse dim formula to find dim based on number of rotations
140
+ def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
141
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
142
+
143
+
144
+ # Find dim range bounds based on rotations
145
+ def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
146
+ low = math.floor(_yarn_find_correction_dim(
147
+ low_rot, dim, base, max_position_embeddings))
148
+ high = math.ceil(_yarn_find_correction_dim(
149
+ high_rot, dim, base, max_position_embeddings))
150
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
151
+
152
+
153
+ def _yarn_linear_ramp_mask(min, max, dim):
154
+ if min == max:
155
+ max += 0.001 # Prevent singularity
156
+
157
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
158
+ ramp_func = torch.clamp(linear_func, 0, 1)
159
+ return ramp_func
160
+
161
+
162
+ def _yarn_get_mscale(scale=1):
163
+ if scale <= 1:
164
+ return 1.0
165
+ return 0.1 * math.log(scale) + 1.0
166
+
167
+
168
+ def compute_flash_attention_packed(flash_attn, q, k, v, attention_mask=None):
169
+ if attention_mask is not None:
170
+ attention_mask = attention_mask[:, 0, -1]
171
+ q, k, v = (q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2))
172
+
173
+ # q, k, v: [bs, seq_len, num_attention_heads, attn_head_size]
174
+ # attention_mask (float): [bs, seq_len]
175
+ batch_size, max_len = q.size(0), q.size(1)
176
+
177
+ qkv = torch.stack([q, k, v], dim=2).to(
178
+ torch.float16
179
+ ) # need to truncate in case input is fp32
180
+ cu_seqlens, max_seqlen = None, None
181
+
182
+ if attention_mask is None:
183
+ return flash_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
184
+ else:
185
+ # Limitation: non-contiguous attention mask will not be handled correctly
186
+ # model will be able to pay attention between the first and last non-masked token, i.e. left- and right-side padding is supported.
187
+ csums = (attention_mask >= 0).cumsum(dim=1)
188
+ ends = csums.argmax(dim=1) + 1
189
+ starts = ends - csums.max(dim=1).values
190
+ seqlens = ends - starts
191
+
192
+ qkv = torch.cat([qkv[i, starts[i]: ends[i]] for i in range(batch_size)], dim=0)
193
+ zero = torch.zeros_like(
194
+ seqlens[:1]
195
+ ) # torch.tensor([0]) with correct dtype and device
196
+ cu_seqlens = torch.cat([zero, seqlens.cumsum(dim=0)], dim=0).to(torch.int32)
197
+ max_seqlen = seqlens.max().item()
198
+
199
+ out = flash_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
200
+ # out: [num_unmasked_tokens, num_attention_heads, attn_head_size]
201
+
202
+ seqs = [out[start:end] for start, end in zip(cu_seqlens[:-1], cu_seqlens[1:])]
203
+ # stack and pad sequences together
204
+ padded_seqs = [
205
+ F.pad(
206
+ seqs[i],
207
+ (0, 0) * (seqs[i].dim() - 1) + (starts[i], max_len - ends[i]),
208
+ value=0.0,
209
+ )
210
+ for i in range(batch_size)
211
+ ]
212
+
213
+ return torch.stack(padded_seqs).transpose(1, 2)
214
+
215
+
216
+ def compute_flash_attention_inference(query_states, key_states, value_states, attention_mask=None, dropout=0.0):
217
+ scale = query_states.shape[-1] ** (-0.5)
218
+
219
+ batch, _, seq_len_q, _ = query_states.shape
220
+ _, _, seq_len_k, _ = value_states.shape
221
+
222
+ query_states = rearrange(query_states, "b h s d -> b s h d").to(torch.float16)
223
+ key_states = rearrange(key_states, "b h s d -> b s h d").to(torch.float16)
224
+ value_states = rearrange(value_states, "b h s d -> b s h d").to(torch.float16)
225
+
226
+ if attention_mask is not None:
227
+ attention_mask = attention_mask[:, 0, -1]
228
+ csums = (attention_mask >= 0).cumsum(dim=1)
229
+ ends = csums.argmax(dim=1) + 1
230
+ starts = ends - csums.max(dim=1).values
231
+
232
+ query_states = torch.cat([query_states[i, starts[i]: ends[i]] for i in range(batch)], dim=0)
233
+ key_states = torch.cat([key_states[i, starts[i]: ends[i]] for i in range(batch)], dim=0)
234
+ value_states = torch.cat([value_states[i, starts[i]: ends[i]] for i in range(batch)], dim=0)
235
+
236
+ cu_seqlens_q = torch.arange(0, (batch + 1) * seq_len_q, step=seq_len_q, dtype=torch.int32,
237
+ device=query_states.device)
238
+
239
+ cu_seqlens_k = torch.arange(0, (batch + 1) * seq_len_k, step=seq_len_k, dtype=torch.int32,
240
+ device=key_states.device)
241
+
242
+ # No point returning attn_probs since it is not guaranteed to be correct
243
+ if seq_len_q == seq_len_k:
244
+ attn_output = flash_attn_varlen_func(query_states, key_states, value_states,
245
+ cu_seqlens_q, cu_seqlens_k, seq_len_q, seq_len_k,
246
+ dropout, scale, causal=True, return_attn_probs=False)
247
+ else:
248
+ attn_output = flash_attn_varlen_func(query_states, key_states, value_states,
249
+ cu_seqlens_q, cu_seqlens_k, seq_len_q, seq_len_k,
250
+ dropout, scale, causal=False, return_attn_probs=False)
251
+
252
+ return rearrange(attn_output, "(b s) h d-> b h s d", b=batch)
253
+
254
+
255
+ class LlamaRMSNorm(nn.Module):
256
+ def __init__(self, hidden_size, eps=1e-6):
257
+ """
258
+ LlamaRMSNorm is equivalent to T5LayerNorm
259
+ """
260
+ super().__init__()
261
+ self.weight = nn.Parameter(torch.ones(hidden_size))
262
+ self.variance_epsilon = eps
263
+
264
+ def forward(self, hidden_states):
265
+ input_dtype = hidden_states.dtype
266
+ hidden_states = hidden_states.to(torch.float32)
267
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
268
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
269
+ return (self.weight * hidden_states).to(input_dtype)
270
+
271
+
272
+ class LlamaRotaryEmbedding(torch.nn.Module):
273
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
274
+ super().__init__()
275
+
276
+ self.dim = dim
277
+ self.max_position_embeddings = max_position_embeddings
278
+ self.base = base
279
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
280
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
281
+
282
+ # Build here to make `torch.jit.trace` work.
283
+ self._set_cos_sin_cache(
284
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
285
+ )
286
+
287
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
288
+ self.max_seq_len_cached = seq_len
289
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
290
+
291
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
292
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
293
+ emb = torch.cat((freqs, freqs), dim=-1)
294
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
295
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
296
+
297
+ def forward(self, x, seq_len=None):
298
+ # x: [bs, num_attention_heads, seq_len, head_size]
299
+ if seq_len > self.max_seq_len_cached:
300
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
301
+
302
+ return (
303
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
304
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
305
+ )
306
+
307
+
308
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
309
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
310
+
311
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
312
+ self.scaling_factor = scaling_factor
313
+ super().__init__(dim, max_position_embeddings, base, device)
314
+
315
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
316
+ self.max_seq_len_cached = seq_len
317
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
318
+ t = t / self.scaling_factor
319
+
320
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
321
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
322
+ emb = torch.cat((freqs, freqs), dim=-1)
323
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
324
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
325
+
326
+
327
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
328
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
329
+
330
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
331
+ self.scaling_factor = scaling_factor
332
+ super().__init__(dim, max_position_embeddings, base, device)
333
+
334
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
335
+ self.max_seq_len_cached = seq_len
336
+
337
+ if seq_len > self.max_position_embeddings:
338
+ base = self.base * (
339
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
340
+ ) ** (self.dim / (self.dim - 2))
341
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
342
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
343
+
344
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
345
+
346
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
347
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
348
+ emb = torch.cat((freqs, freqs), dim=-1)
349
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
350
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
351
+
352
+
353
+ class LlamaNTKByPartsRotaryEmbedding(LlamaRotaryEmbedding):
354
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, ntk_factor=1.0,
355
+ extrapolation_factor=1.0, original_max_position_embeddings=2048):
356
+ super().__init__(dim, max_position_embeddings, base, device)
357
+
358
+ inv_freq = _ntk_build_inv_freq(dim, base, scaling_factor, ntk_factor, extrapolation_factor,
359
+ original_max_position_embeddings, device)
360
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
361
+
362
+ # Build here to make `torch.jit.trace` work.
363
+ self._set_cos_sin_cache(
364
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
365
+ )
366
+
367
+
368
+ class LlamaYaRNScaledRotaryEmbedding(torch.nn.Module):
369
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
370
+ extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, finetuned=False, device=None):
371
+ super().__init__()
372
+
373
+ self.dim = dim
374
+ self.max_position_embeddings = max_position_embeddings
375
+ self.base = base
376
+ self.scale = scale
377
+ self.original_max_position_embeddings = original_max_position_embeddings
378
+ self.extrapolation_factor = extrapolation_factor
379
+ self.attn_factor = attn_factor
380
+ self.beta_fast = beta_fast
381
+ self.beta_slow = beta_slow
382
+
383
+ self.yarn(device)
384
+
385
+ # Build here to make `torch.jit.trace` work.
386
+ self.max_seq_len_cached = max_position_embeddings
387
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
388
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
389
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
390
+ emb = torch.cat((freqs, freqs), dim=-1)
391
+ dtype = torch.get_default_dtype()
392
+
393
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
394
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
395
+
396
+ def forward(self, x, seq_len=None):
397
+ # x: [bs, num_attention_heads, seq_len, head_size]
398
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
399
+ if seq_len > self.max_seq_len_cached:
400
+ self.max_seq_len_cached = seq_len
401
+
402
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
403
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
404
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
405
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
406
+
407
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(x.dtype),
408
+ persistent=False)
409
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype),
410
+ persistent=False)
411
+ return (
412
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
413
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
414
+ )
415
+
416
+ def yarn(self, device):
417
+ pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
418
+ inv_freq_extrapolation = 1.0 / pos_freqs
419
+ inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
420
+
421
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
422
+ self.original_max_position_embeddings)
423
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(
424
+ device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
425
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
426
+
427
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
428
+ self.mscale = float(
429
+ _yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
430
+
431
+
432
+ class LlamaDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
433
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, original_max_position_embeddings=2048,
434
+ extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, finetuned=False, device=None):
435
+ super().__init__()
436
+
437
+ self.dim = dim
438
+ self.max_position_embeddings = max_position_embeddings
439
+ self.base = base
440
+ self.original_max_position_embeddings = original_max_position_embeddings
441
+ self.extrapolation_factor = extrapolation_factor
442
+ self.attn_factor = attn_factor
443
+ self.beta_fast = beta_fast
444
+ self.beta_slow = beta_slow
445
+
446
+ if finetuned:
447
+ self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
448
+ else:
449
+ inv_freq = 1.0 / \
450
+ (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
451
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
452
+ self.mscale = 1
453
+
454
+ # Build here to make `torch.jit.trace` work.
455
+ self.max_seq_len_cached = max_position_embeddings
456
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
457
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
458
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
459
+ emb = torch.cat((freqs, freqs), dim=-1)
460
+ dtype = torch.get_default_dtype()
461
+
462
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
463
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
464
+
465
+ def forward(self, x, seq_len=None):
466
+ # x: [bs, num_attention_heads, seq_len, head_size]
467
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
468
+ if seq_len > self.max_seq_len_cached:
469
+ self.max_seq_len_cached = seq_len
470
+
471
+ self.yarn(seq_len / self.max_position_embeddings, x.device)
472
+
473
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
474
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
475
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
476
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
477
+
478
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(x.dtype),
479
+ persistent=False)
480
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype),
481
+ persistent=False)
482
+ return (
483
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
484
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
485
+ )
486
+
487
+ def yarn(self, scale, device):
488
+ pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
489
+ inv_freq_extrapolation = 1.0 / pos_freqs
490
+ inv_freq_interpolation = 1.0 / (scale * pos_freqs)
491
+
492
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
493
+ self.original_max_position_embeddings)
494
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(
495
+ device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
496
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
497
+
498
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
499
+ self.mscale = float(
500
+ _yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
501
+
502
+
503
+ def rotate_half(x):
504
+ """Rotates half the hidden dims of the input."""
505
+ x1 = x[..., : x.shape[-1] // 2]
506
+ x2 = x[..., x.shape[-1] // 2:]
507
+ return torch.cat((-x2, x1), dim=-1)
508
+
509
+
510
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
511
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
512
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
513
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
514
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
515
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
516
+ q_embed = (q * cos) + (rotate_half(q) * sin)
517
+ k_embed = (k * cos) + (rotate_half(k) * sin)
518
+ return q_embed, k_embed
519
+
520
+
521
+ class LlamaMLP(nn.Module):
522
+ def __init__(self, config):
523
+ super().__init__()
524
+ self.config = config
525
+ self.hidden_size = config.hidden_size
526
+ self.intermediate_size = config.intermediate_size
527
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
528
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
529
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
530
+ self.act_fn = ACT2FN[config.hidden_act]
531
+
532
+ def forward(self, x):
533
+ if self.config.pretraining_tp > 1:
534
+ slice = self.intermediate_size // self.config.pretraining_tp
535
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
536
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
537
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
538
+
539
+ gate_proj = torch.cat(
540
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
541
+ )
542
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
543
+
544
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
545
+ down_proj = [
546
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
547
+ ]
548
+ down_proj = sum(down_proj)
549
+ else:
550
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
551
+
552
+ return down_proj
553
+
554
+
555
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
556
+ """
557
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
558
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
559
+ """
560
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
561
+ if n_rep == 1:
562
+ return hidden_states
563
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
564
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
565
+
566
+
567
+ class LlamaAttention(nn.Module):
568
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
569
+
570
+ def __init__(self, config: LlamaConfig):
571
+ super().__init__()
572
+ self.config = config
573
+ self.hidden_size = config.hidden_size
574
+ self.num_heads = config.num_attention_heads
575
+ self.head_dim = self.hidden_size // self.num_heads
576
+ self.num_key_value_heads = config.num_key_value_heads
577
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
578
+ self.max_position_embeddings = config.max_position_embeddings
579
+
580
+ if (self.head_dim * self.num_heads) != self.hidden_size:
581
+ raise ValueError(
582
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
583
+ f" and `num_heads`: {self.num_heads})."
584
+ )
585
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
586
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
587
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
588
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
589
+ self._init_rope()
590
+ self.use_flash_attention = config.use_flash_attention
591
+ if self.use_flash_attention:
592
+ if not have_flash_attention:
593
+ raise RuntimeError("Flash Attention 2 not installed")
594
+ self.flash_attention = FlashSelfAttention(causal=True)
595
+
596
+ def _init_rope(self):
597
+ if self.config.rope_scaling is None:
598
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
599
+ else:
600
+ scaling_type = self.config.rope_scaling["type"]
601
+ scaling_factor = self.config.rope_scaling["factor"]
602
+ if scaling_type == "linear":
603
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
604
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
605
+ )
606
+ elif scaling_type == "dynamic":
607
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
608
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
609
+ )
610
+ elif scaling_type == "ntk-by-parts":
611
+ original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
612
+ self.rotary_emb = LlamaNTKByPartsRotaryEmbedding(
613
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor,
614
+ original_max_position_embeddings=original_max_position_embeddings
615
+ )
616
+ elif scaling_type == "yarn":
617
+ original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
618
+ self.rotary_emb = LlamaYaRNScaledRotaryEmbedding(
619
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=scaling_factor,
620
+ original_max_position_embeddings=original_max_position_embeddings
621
+ )
622
+ elif scaling_type == "dynamic-yarn":
623
+ original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
624
+ self.rotary_emb = LlamaDynamicYaRNScaledRotaryEmbedding(
625
+ self.head_dim, max_position_embeddings=self.max_position_embeddings,
626
+ original_max_position_embeddings=original_max_position_embeddings
627
+ )
628
+ else:
629
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
630
+
631
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
632
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
633
+
634
+ def forward(
635
+ self,
636
+ hidden_states: torch.Tensor,
637
+ attention_mask: Optional[torch.Tensor] = None,
638
+ position_ids: Optional[torch.LongTensor] = None,
639
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
640
+ output_attentions: bool = False,
641
+ use_cache: bool = False,
642
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
643
+ bsz, q_len, _ = hidden_states.size()
644
+
645
+ if self.config.pretraining_tp > 1:
646
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
647
+ query_slices = self.q_proj.weight.split(
648
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
649
+ )
650
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
651
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
652
+
653
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
654
+ query_states = torch.cat(query_states, dim=-1)
655
+
656
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
657
+ key_states = torch.cat(key_states, dim=-1)
658
+
659
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
660
+ value_states = torch.cat(value_states, dim=-1)
661
+
662
+ else:
663
+ query_states = self.q_proj(hidden_states)
664
+ key_states = self.k_proj(hidden_states)
665
+ value_states = self.v_proj(hidden_states)
666
+
667
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
668
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
669
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
670
+
671
+ kv_seq_len = key_states.shape[-2]
672
+ if past_key_value is not None:
673
+ kv_seq_len += past_key_value[0].shape[-2]
674
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
675
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
676
+
677
+ if past_key_value is not None:
678
+ # reuse k, v, self_attention
679
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
680
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
681
+
682
+ past_key_value = (key_states, value_states) if use_cache else None
683
+
684
+ # repeat k/v heads if n_kv_heads < n_heads
685
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
686
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
687
+
688
+ if self.use_flash_attention and not output_attentions:
689
+ out_dtype = value_states.dtype
690
+ if self.training or query_states.shape == key_states.shape:
691
+ self.flash_attention.train(self.training)
692
+ attn_output = compute_flash_attention_packed(self.flash_attention, query_states, key_states,
693
+ value_states, attention_mask)
694
+ else:
695
+ attn_output = compute_flash_attention_inference(query_states, key_states, value_states, attention_mask)
696
+ attn_output = attn_output.to(out_dtype)
697
+ else:
698
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
699
+
700
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
701
+ raise ValueError(
702
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
703
+ f" {attn_weights.size()}"
704
+ )
705
+
706
+ if attention_mask is not None:
707
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
708
+ raise ValueError(
709
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
710
+ )
711
+ attn_weights = attn_weights + attention_mask
712
+
713
+ # upcast attention to fp32
714
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
715
+ attn_output = torch.matmul(attn_weights, value_states)
716
+
717
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
718
+ raise ValueError(
719
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
720
+ f" {attn_output.size()}"
721
+ )
722
+
723
+ attn_output = attn_output.transpose(1, 2).contiguous()
724
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
725
+
726
+ if self.config.pretraining_tp > 1:
727
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
728
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
729
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
730
+ else:
731
+ attn_output = self.o_proj(attn_output)
732
+
733
+ if not output_attentions:
734
+ attn_weights = None
735
+
736
+ return attn_output, attn_weights, past_key_value
737
+
738
+
739
+ class LlamaDecoderLayer(nn.Module):
740
+ def __init__(self, config: LlamaConfig):
741
+ super().__init__()
742
+ self.hidden_size = config.hidden_size
743
+ self.self_attn = LlamaAttention(config=config)
744
+ self.mlp = LlamaMLP(config)
745
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
746
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
747
+
748
+ def forward(
749
+ self,
750
+ hidden_states: torch.Tensor,
751
+ attention_mask: Optional[torch.Tensor] = None,
752
+ position_ids: Optional[torch.LongTensor] = None,
753
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
754
+ output_attentions: Optional[bool] = False,
755
+ use_cache: Optional[bool] = False,
756
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
757
+ """
758
+ Args:
759
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
760
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
761
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
762
+ output_attentions (`bool`, *optional*):
763
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
764
+ returned tensors for more detail.
765
+ use_cache (`bool`, *optional*):
766
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
767
+ (see `past_key_values`).
768
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
769
+ """
770
+
771
+ residual = hidden_states
772
+
773
+ hidden_states = self.input_layernorm(hidden_states)
774
+
775
+ # Self Attention
776
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
777
+ hidden_states=hidden_states,
778
+ attention_mask=attention_mask,
779
+ position_ids=position_ids,
780
+ past_key_value=past_key_value,
781
+ output_attentions=output_attentions,
782
+ use_cache=use_cache,
783
+ )
784
+ hidden_states = residual + hidden_states
785
+
786
+ # Fully Connected
787
+ residual = hidden_states
788
+ hidden_states = self.post_attention_layernorm(hidden_states)
789
+ hidden_states = self.mlp(hidden_states)
790
+ hidden_states = residual + hidden_states
791
+
792
+ outputs = (hidden_states,)
793
+
794
+ if output_attentions:
795
+ outputs += (self_attn_weights,)
796
+
797
+ if use_cache:
798
+ outputs += (present_key_value,)
799
+
800
+ return outputs
801
+
802
+
803
+ LLAMA_START_DOCSTRING = r"""
804
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
805
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
806
+ etc.)
807
+
808
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
809
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
810
+ and behavior.
811
+
812
+ Parameters:
813
+ config ([`LlamaConfig`]):
814
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
815
+ load the weights associated with the model, only the configuration. Check out the
816
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
817
+ """
818
+
819
+
820
+ @add_start_docstrings(
821
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
822
+ LLAMA_START_DOCSTRING,
823
+ )
824
+ class LlamaPreTrainedModel(PreTrainedModel):
825
+ config_class = LlamaConfig
826
+ base_model_prefix = "model"
827
+ supports_gradient_checkpointing = True
828
+ _no_split_modules = ["LlamaDecoderLayer"]
829
+ _skip_keys_device_placement = "past_key_values"
830
+
831
+ def _init_weights(self, module):
832
+ std = self.config.initializer_range
833
+ if isinstance(module, nn.Linear):
834
+ module.weight.data.normal_(mean=0.0, std=std)
835
+ if module.bias is not None:
836
+ module.bias.data.zero_()
837
+ elif isinstance(module, nn.Embedding):
838
+ module.weight.data.normal_(mean=0.0, std=std)
839
+ if module.padding_idx is not None:
840
+ module.weight.data[module.padding_idx].zero_()
841
+
842
+ def _set_gradient_checkpointing(self, module, value=False):
843
+ if isinstance(module, LlamaModel):
844
+ module.gradient_checkpointing = value
845
+
846
+
847
+ LLAMA_INPUTS_DOCSTRING = r"""
848
+ Args:
849
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
850
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
851
+ it.
852
+
853
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
854
+ [`PreTrainedTokenizer.__call__`] for details.
855
+
856
+ [What are input IDs?](../glossary#input-ids)
857
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
858
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
859
+
860
+ - 1 for tokens that are **not masked**,
861
+ - 0 for tokens that are **masked**.
862
+
863
+ [What are attention masks?](../glossary#attention-mask)
864
+
865
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
866
+ [`PreTrainedTokenizer.__call__`] for details.
867
+
868
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
869
+ `past_key_values`).
870
+
871
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
872
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
873
+ information on the default strategy.
874
+
875
+ - 1 indicates the head is **not masked**,
876
+ - 0 indicates the head is **masked**.
877
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
878
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
879
+ config.n_positions - 1]`.
880
+
881
+ [What are position IDs?](../glossary#position-ids)
882
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
883
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
884
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
885
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
886
+
887
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
888
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
889
+
890
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
891
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
892
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
893
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
894
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
895
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
896
+ model's internal embedding lookup matrix.
897
+ use_cache (`bool`, *optional*):
898
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
899
+ `past_key_values`).
900
+ output_attentions (`bool`, *optional*):
901
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
902
+ tensors for more detail.
903
+ output_hidden_states (`bool`, *optional*):
904
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
905
+ more detail.
906
+ return_dict (`bool`, *optional*):
907
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
908
+ """
909
+
910
+
911
+ @add_start_docstrings(
912
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
913
+ LLAMA_START_DOCSTRING,
914
+ )
915
+ class LlamaModel(LlamaPreTrainedModel):
916
+ """
917
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
918
+
919
+ Args:
920
+ config: LlamaConfig
921
+ """
922
+
923
+ def __init__(self, config: LlamaConfig):
924
+ super().__init__(config)
925
+ self.padding_idx = config.pad_token_id
926
+ self.vocab_size = config.vocab_size
927
+
928
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
929
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
930
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
931
+
932
+ self.gradient_checkpointing = False
933
+ self.use_flash_attention = config.use_flash_attention
934
+ # Initialize weights and apply final processing
935
+ self.post_init()
936
+
937
+ def get_input_embeddings(self):
938
+ return self.embed_tokens
939
+
940
+ def set_input_embeddings(self, value):
941
+ self.embed_tokens = value
942
+
943
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
944
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
945
+ # create causal mask
946
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
947
+ combined_attention_mask = None
948
+ if input_shape[-1] > 1:
949
+ combined_attention_mask = _make_causal_mask(
950
+ input_shape,
951
+ inputs_embeds.dtype,
952
+ device=inputs_embeds.device,
953
+ past_key_values_length=past_key_values_length,
954
+ )
955
+
956
+ if attention_mask is not None:
957
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
958
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
959
+ inputs_embeds.device
960
+ )
961
+ combined_attention_mask = (
962
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
963
+ )
964
+
965
+ return combined_attention_mask
966
+
967
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
968
+ def forward(
969
+ self,
970
+ input_ids: torch.LongTensor = None,
971
+ attention_mask: Optional[torch.Tensor] = None,
972
+ position_ids: Optional[torch.LongTensor] = None,
973
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
974
+ inputs_embeds: Optional[torch.FloatTensor] = None,
975
+ use_cache: Optional[bool] = None,
976
+ output_attentions: Optional[bool] = None,
977
+ output_hidden_states: Optional[bool] = None,
978
+ return_dict: Optional[bool] = None,
979
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
980
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
981
+ output_hidden_states = (
982
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
983
+ )
984
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
985
+
986
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
987
+
988
+ # retrieve input_ids and inputs_embeds
989
+ if input_ids is not None and inputs_embeds is not None:
990
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
991
+ elif input_ids is not None:
992
+ batch_size, seq_length = input_ids.shape
993
+ elif inputs_embeds is not None:
994
+ batch_size, seq_length, _ = inputs_embeds.shape
995
+ else:
996
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
997
+
998
+ seq_length_with_past = seq_length
999
+ past_key_values_length = 0
1000
+
1001
+ if past_key_values is not None:
1002
+ past_key_values_length = past_key_values[0][0].shape[2]
1003
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1004
+
1005
+ if position_ids is None:
1006
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1007
+ position_ids = torch.arange(
1008
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1009
+ )
1010
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1011
+ else:
1012
+ position_ids = position_ids.view(-1, seq_length).long()
1013
+
1014
+ if inputs_embeds is None:
1015
+ inputs_embeds = self.embed_tokens(input_ids)
1016
+ # embed positions
1017
+ if attention_mask is None:
1018
+ attention_mask = torch.ones(
1019
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
1020
+ )
1021
+ attention_mask = self._prepare_decoder_attention_mask(
1022
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1023
+ )
1024
+
1025
+ hidden_states = inputs_embeds
1026
+
1027
+ if self.gradient_checkpointing and self.training:
1028
+ if use_cache:
1029
+ logger.warning_once(
1030
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1031
+ )
1032
+ use_cache = False
1033
+
1034
+ # decoder layers
1035
+ all_hidden_states = () if output_hidden_states else None
1036
+ all_self_attns = () if output_attentions else None
1037
+ next_decoder_cache = () if use_cache else None
1038
+
1039
+ for idx, decoder_layer in enumerate(self.layers):
1040
+ if output_hidden_states:
1041
+ all_hidden_states += (hidden_states,)
1042
+
1043
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1044
+
1045
+ if self.gradient_checkpointing and self.training:
1046
+
1047
+ def create_custom_forward(module):
1048
+ def custom_forward(*inputs):
1049
+ # None for past_key_value
1050
+ return module(*inputs, output_attentions, None)
1051
+
1052
+ return custom_forward
1053
+
1054
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1055
+ create_custom_forward(decoder_layer),
1056
+ hidden_states,
1057
+ attention_mask,
1058
+ position_ids,
1059
+ None,
1060
+ )
1061
+ else:
1062
+ layer_outputs = decoder_layer(
1063
+ hidden_states,
1064
+ attention_mask=attention_mask,
1065
+ position_ids=position_ids,
1066
+ past_key_value=past_key_value,
1067
+ output_attentions=output_attentions,
1068
+ use_cache=use_cache,
1069
+ )
1070
+
1071
+ hidden_states = layer_outputs[0]
1072
+
1073
+ if use_cache:
1074
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1075
+
1076
+ if output_attentions:
1077
+ all_self_attns += (layer_outputs[1],)
1078
+
1079
+ hidden_states = self.norm(hidden_states)
1080
+
1081
+ # add hidden states from the last decoder layer
1082
+ if output_hidden_states:
1083
+ all_hidden_states += (hidden_states,)
1084
+
1085
+ next_cache = next_decoder_cache if use_cache else None
1086
+ if not return_dict:
1087
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1088
+ return BaseModelOutputWithPast(
1089
+ last_hidden_state=hidden_states,
1090
+ past_key_values=next_cache,
1091
+ hidden_states=all_hidden_states,
1092
+ attentions=all_self_attns,
1093
+ )
1094
+
1095
+
1096
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1097
+ _tied_weights_keys = ["lm_head.weight"]
1098
+
1099
+ def __init__(self, config):
1100
+ super().__init__(config)
1101
+ self.model = LlamaModel(config)
1102
+ self.vocab_size = config.vocab_size
1103
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1104
+
1105
+ # Initialize weights and apply final processing
1106
+ self.post_init()
1107
+
1108
+ def get_input_embeddings(self):
1109
+ return self.model.embed_tokens
1110
+
1111
+ def set_input_embeddings(self, value):
1112
+ self.model.embed_tokens = value
1113
+
1114
+ def get_output_embeddings(self):
1115
+ return self.lm_head
1116
+
1117
+ def set_output_embeddings(self, new_embeddings):
1118
+ self.lm_head = new_embeddings
1119
+
1120
+ def set_decoder(self, decoder):
1121
+ self.model = decoder
1122
+
1123
+ def get_decoder(self):
1124
+ return self.model
1125
+
1126
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1127
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1128
+ def forward(
1129
+ self,
1130
+ input_ids: torch.LongTensor = None,
1131
+ attention_mask: Optional[torch.Tensor] = None,
1132
+ position_ids: Optional[torch.LongTensor] = None,
1133
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1134
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1135
+ labels: Optional[torch.LongTensor] = None,
1136
+ use_cache: Optional[bool] = None,
1137
+ output_attentions: Optional[bool] = None,
1138
+ output_hidden_states: Optional[bool] = None,
1139
+ return_dict: Optional[bool] = None,
1140
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1141
+ r"""
1142
+ Args:
1143
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1144
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1145
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1146
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1147
+
1148
+ Returns:
1149
+
1150
+ Example:
1151
+
1152
+ ```python
1153
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1154
+
1155
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1156
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1157
+
1158
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1159
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1160
+
1161
+ >>> # Generate
1162
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1163
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1164
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1165
+ ```"""
1166
+
1167
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1168
+ output_hidden_states = (
1169
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1170
+ )
1171
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1172
+
1173
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1174
+ outputs = self.model(
1175
+ input_ids=input_ids,
1176
+ attention_mask=attention_mask,
1177
+ position_ids=position_ids,
1178
+ past_key_values=past_key_values,
1179
+ inputs_embeds=inputs_embeds,
1180
+ use_cache=use_cache,
1181
+ output_attentions=output_attentions,
1182
+ output_hidden_states=output_hidden_states,
1183
+ return_dict=return_dict,
1184
+ )
1185
+
1186
+ hidden_states = outputs[0]
1187
+ if self.config.pretraining_tp > 1:
1188
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1189
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1190
+ logits = torch.cat(logits, dim=-1)
1191
+ else:
1192
+ logits = self.lm_head(hidden_states)
1193
+ logits = logits.float()
1194
+
1195
+ loss = None
1196
+ if labels is not None:
1197
+ # Shift so that tokens < n predict n
1198
+ shift_logits = logits[..., :-1, :].contiguous()
1199
+ shift_labels = labels[..., 1:].contiguous()
1200
+ # Flatten the tokens
1201
+ loss_fct = CrossEntropyLoss()
1202
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1203
+ shift_labels = shift_labels.view(-1)
1204
+ # Enable model parallelism
1205
+ shift_labels = shift_labels.to(shift_logits.device)
1206
+ loss = loss_fct(shift_logits, shift_labels)
1207
+
1208
+ if not return_dict:
1209
+ output = (logits,) + outputs[1:]
1210
+ return (loss,) + output if loss is not None else output
1211
+
1212
+ return CausalLMOutputWithPast(
1213
+ loss=loss,
1214
+ logits=logits,
1215
+ past_key_values=outputs.past_key_values,
1216
+ hidden_states=outputs.hidden_states,
1217
+ attentions=outputs.attentions,
1218
+ )
1219
+
1220
+ def prepare_inputs_for_generation(
1221
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1222
+ ):
1223
+ if past_key_values:
1224
+ input_ids = input_ids[:, -1:]
1225
+
1226
+ position_ids = kwargs.get("position_ids", None)
1227
+ if attention_mask is not None and position_ids is None:
1228
+ # create position_ids on the fly for batch generation
1229
+ position_ids = attention_mask.long().cumsum(-1) - 1
1230
+ position_ids.masked_fill_(attention_mask == 0, 1)
1231
+ if past_key_values:
1232
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1233
+
1234
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1235
+ if inputs_embeds is not None and past_key_values is None:
1236
+ model_inputs = {"inputs_embeds": inputs_embeds}
1237
+ else:
1238
+ model_inputs = {"input_ids": input_ids}
1239
+
1240
+ model_inputs.update(
1241
+ {
1242
+ "position_ids": position_ids,
1243
+ "past_key_values": past_key_values,
1244
+ "use_cache": kwargs.get("use_cache"),
1245
+ "attention_mask": attention_mask,
1246
+ }
1247
+ )
1248
+ return model_inputs
1249
+
1250
+ @staticmethod
1251
+ def _reorder_cache(past_key_values, beam_idx):
1252
+ reordered_past = ()
1253
+ for layer_past in past_key_values:
1254
+ reordered_past += (
1255
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1256
+ )
1257
+ return reordered_past
1258
+
1259
+
1260
+ @add_start_docstrings(
1261
+ """
1262
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1263
+
1264
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1265
+ (e.g. GPT-2) do.
1266
+
1267
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1268
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1269
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1270
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1271
+ each row of the batch).
1272
+ """,
1273
+ LLAMA_START_DOCSTRING,
1274
+ )
1275
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1276
+ def __init__(self, config):
1277
+ super().__init__(config)
1278
+ self.num_labels = config.num_labels
1279
+ self.model = LlamaModel(config)
1280
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1281
+
1282
+ # Initialize weights and apply final processing
1283
+ self.post_init()
1284
+
1285
+ def get_input_embeddings(self):
1286
+ return self.model.embed_tokens
1287
+
1288
+ def set_input_embeddings(self, value):
1289
+ self.model.embed_tokens = value
1290
+
1291
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1292
+ def forward(
1293
+ self,
1294
+ input_ids: torch.LongTensor = None,
1295
+ attention_mask: Optional[torch.Tensor] = None,
1296
+ position_ids: Optional[torch.LongTensor] = None,
1297
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1298
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1299
+ labels: Optional[torch.LongTensor] = None,
1300
+ use_cache: Optional[bool] = None,
1301
+ output_attentions: Optional[bool] = None,
1302
+ output_hidden_states: Optional[bool] = None,
1303
+ return_dict: Optional[bool] = None,
1304
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1305
+ r"""
1306
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1307
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1308
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1309
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1310
+ """
1311
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1312
+
1313
+ transformer_outputs = self.model(
1314
+ input_ids,
1315
+ attention_mask=attention_mask,
1316
+ position_ids=position_ids,
1317
+ past_key_values=past_key_values,
1318
+ inputs_embeds=inputs_embeds,
1319
+ use_cache=use_cache,
1320
+ output_attentions=output_attentions,
1321
+ output_hidden_states=output_hidden_states,
1322
+ return_dict=return_dict,
1323
+ )
1324
+ hidden_states = transformer_outputs[0]
1325
+ logits = self.score(hidden_states)
1326
+
1327
+ if input_ids is not None:
1328
+ batch_size = input_ids.shape[0]
1329
+ else:
1330
+ batch_size = inputs_embeds.shape[0]
1331
+
1332
+ if self.config.pad_token_id is None and batch_size != 1:
1333
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1334
+ if self.config.pad_token_id is None:
1335
+ sequence_lengths = -1
1336
+ else:
1337
+ if input_ids is not None:
1338
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1339
+ else:
1340
+ sequence_lengths = -1
1341
+
1342
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1343
+
1344
+ loss = None
1345
+ if labels is not None:
1346
+ labels = labels.to(logits.device)
1347
+ if self.config.problem_type is None:
1348
+ if self.num_labels == 1:
1349
+ self.config.problem_type = "regression"
1350
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1351
+ self.config.problem_type = "single_label_classification"
1352
+ else:
1353
+ self.config.problem_type = "multi_label_classification"
1354
+
1355
+ if self.config.problem_type == "regression":
1356
+ loss_fct = MSELoss()
1357
+ if self.num_labels == 1:
1358
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1359
+ else:
1360
+ loss = loss_fct(pooled_logits, labels)
1361
+ elif self.config.problem_type == "single_label_classification":
1362
+ loss_fct = CrossEntropyLoss()
1363
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1364
+ elif self.config.problem_type == "multi_label_classification":
1365
+ loss_fct = BCEWithLogitsLoss()
1366
+ loss = loss_fct(pooled_logits, labels)
1367
+ if not return_dict:
1368
+ output = (pooled_logits,) + transformer_outputs[1:]
1369
+ return ((loss,) + output) if loss is not None else output
1370
+
1371
+ return SequenceClassifierOutputWithPast(
1372
+ loss=loss,
1373
+ logits=pooled_logits,
1374
+ past_key_values=transformer_outputs.past_key_values,
1375
+ hidden_states=transformer_outputs.hidden_states,
1376
+ attentions=transformer_outputs.attentions,
1377
+ )