End of training
Browse files- README.md +75 -0
- all_results.json +8 -0
- eval_results.json +8 -0
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: motheecreator/vit-Facial-Expression-Recognition
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vit-Facial-Expression-Recognition
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vit-Facial-Expression-Recognition
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3705
|
21 |
+
- Accuracy: 0.8735
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 256
|
46 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_steps: 1000
|
49 |
+
- num_epochs: 3
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
55 |
+
| 4.5195 | 0.2164 | 100 | 0.3776 | 0.8729 |
|
56 |
+
| 4.5328 | 0.4328 | 200 | 0.3786 | 0.8718 |
|
57 |
+
| 4.554 | 0.6492 | 300 | 0.3800 | 0.8717 |
|
58 |
+
| 4.5812 | 0.8656 | 400 | 0.3764 | 0.8739 |
|
59 |
+
| 4.2724 | 1.0801 | 500 | 0.3793 | 0.8722 |
|
60 |
+
| 4.5232 | 1.2965 | 600 | 0.3833 | 0.8693 |
|
61 |
+
| 4.4717 | 1.5128 | 700 | 0.3864 | 0.8684 |
|
62 |
+
| 4.4636 | 1.7292 | 800 | 0.3875 | 0.8676 |
|
63 |
+
| 4.5234 | 1.9456 | 900 | 0.3897 | 0.8667 |
|
64 |
+
| 4.2156 | 2.1601 | 1000 | 0.3993 | 0.8632 |
|
65 |
+
| 4.063 | 2.3765 | 1100 | 0.3934 | 0.8651 |
|
66 |
+
| 4.1068 | 2.5929 | 1200 | 0.3823 | 0.8702 |
|
67 |
+
| 3.9902 | 2.8093 | 1300 | 0.3724 | 0.8734 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.47.1
|
73 |
+
- Pytorch 2.5.1+cu121
|
74 |
+
- Datasets 3.2.0
|
75 |
+
- Tokenizers 0.21.0
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.995401677035434,
|
3 |
+
"eval_accuracy": 0.8734528238079134,
|
4 |
+
"eval_loss": 0.3704567551612854,
|
5 |
+
"eval_runtime": 362.8359,
|
6 |
+
"eval_samples_per_second": 81.497,
|
7 |
+
"eval_steps_per_second": 2.549
|
8 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.995401677035434,
|
3 |
+
"eval_accuracy": 0.8734528238079134,
|
4 |
+
"eval_loss": 0.3704567551612854,
|
5 |
+
"eval_runtime": 362.8359,
|
6 |
+
"eval_samples_per_second": 81.497,
|
7 |
+
"eval_steps_per_second": 2.549
|
8 |
+
}
|