Thao2202 commited on
Commit
9592ba4
·
verified ·
1 Parent(s): a24df4b

End of training

Browse files
Files changed (3) hide show
  1. README.md +75 -0
  2. all_results.json +8 -0
  3. eval_results.json +8 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: motheecreator/vit-Facial-Expression-Recognition
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vit-Facial-Expression-Recognition
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vit-Facial-Expression-Recognition
17
+
18
+ This model is a fine-tuned version of [motheecreator/vit-Facial-Expression-Recognition](https://huggingface.co/motheecreator/vit-Facial-Expression-Recognition) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.3705
21
+ - Accuracy: 0.8735
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 32
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 256
46
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_steps: 1000
49
+ - num_epochs: 3
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
55
+ | 4.5195 | 0.2164 | 100 | 0.3776 | 0.8729 |
56
+ | 4.5328 | 0.4328 | 200 | 0.3786 | 0.8718 |
57
+ | 4.554 | 0.6492 | 300 | 0.3800 | 0.8717 |
58
+ | 4.5812 | 0.8656 | 400 | 0.3764 | 0.8739 |
59
+ | 4.2724 | 1.0801 | 500 | 0.3793 | 0.8722 |
60
+ | 4.5232 | 1.2965 | 600 | 0.3833 | 0.8693 |
61
+ | 4.4717 | 1.5128 | 700 | 0.3864 | 0.8684 |
62
+ | 4.4636 | 1.7292 | 800 | 0.3875 | 0.8676 |
63
+ | 4.5234 | 1.9456 | 900 | 0.3897 | 0.8667 |
64
+ | 4.2156 | 2.1601 | 1000 | 0.3993 | 0.8632 |
65
+ | 4.063 | 2.3765 | 1100 | 0.3934 | 0.8651 |
66
+ | 4.1068 | 2.5929 | 1200 | 0.3823 | 0.8702 |
67
+ | 3.9902 | 2.8093 | 1300 | 0.3724 | 0.8734 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.47.1
73
+ - Pytorch 2.5.1+cu121
74
+ - Datasets 3.2.0
75
+ - Tokenizers 0.21.0
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.995401677035434,
3
+ "eval_accuracy": 0.8734528238079134,
4
+ "eval_loss": 0.3704567551612854,
5
+ "eval_runtime": 362.8359,
6
+ "eval_samples_per_second": 81.497,
7
+ "eval_steps_per_second": 2.549
8
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.995401677035434,
3
+ "eval_accuracy": 0.8734528238079134,
4
+ "eval_loss": 0.3704567551612854,
5
+ "eval_runtime": 362.8359,
6
+ "eval_samples_per_second": 81.497,
7
+ "eval_steps_per_second": 2.549
8
+ }