Update README.md
Browse files
README.md
CHANGED
@@ -4,4 +4,125 @@ base_model:
|
|
4 |
- Qwen/Qwen2.5-VL-3B-Instruct
|
5 |
---
|
6 |
|
7 |
-
Tevatron usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- Qwen/Qwen2.5-VL-3B-Instruct
|
5 |
---
|
6 |
|
7 |
+
# Tevatron usage
|
8 |
+
Tevatron usage: https://github.com/texttron/tevatron/tree/main/examples/multimodal
|
9 |
+
|
10 |
+
# Load the model
|
11 |
+
```python
|
12 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
13 |
+
from peft import PeftModel, PeftConfig
|
14 |
+
|
15 |
+
def get_model(peft_model_name):
|
16 |
+
config = PeftConfig.from_pretrained(peft_model_name)
|
17 |
+
base_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(config.base_model_name_or_path)
|
18 |
+
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
19 |
+
model = model.merge_and_unload()
|
20 |
+
model.eval()
|
21 |
+
return model
|
22 |
+
|
23 |
+
model = get_model('Tevatron/unified-retriever-v0.1').to('cuda:0')
|
24 |
+
processor = AutoProcessor.from_pretrained('Tevatron/unified-retriever-v0.1')
|
25 |
+
|
26 |
+
```
|
27 |
+
|
28 |
+
# Encode text query
|
29 |
+
|
30 |
+
```python
|
31 |
+
import torch
|
32 |
+
from qwen_vl_utils import process_vision_info
|
33 |
+
|
34 |
+
def get_embedding(last_hidden_state: torch.Tensor) -> torch.Tensor:
|
35 |
+
reps = last_hidden_state[:, -1]
|
36 |
+
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
|
37 |
+
return reps
|
38 |
+
|
39 |
+
queries = ["Where can we see Llama?", "What is the LLaMA AI model?"]
|
40 |
+
|
41 |
+
query_messages = []
|
42 |
+
for query in queries:
|
43 |
+
message = [
|
44 |
+
{
|
45 |
+
'role': 'user',
|
46 |
+
'content': [
|
47 |
+
{'type': 'text', 'text': f'Query: {query}'},
|
48 |
+
]
|
49 |
+
}
|
50 |
+
]
|
51 |
+
query_messages.append(message)
|
52 |
+
|
53 |
+
query_texts = [
|
54 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=False) + "<|endoftext|>"
|
55 |
+
for msg in query_messages
|
56 |
+
]
|
57 |
+
|
58 |
+
query_image_inputs, query_video_inputs = process_vision_info(query_messages)
|
59 |
+
query_inputs = processor(text=query_texts, images=query_image_inputs, videos=query_video_inputs, padding='longest', return_tensors='pt').to('cuda:0')
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
output = model(**query_inputs, return_dict=True, output_hidden_states=True)
|
63 |
+
query_embeddings = get_embedding(output.hidden_states[-1])
|
64 |
+
|
65 |
+
```
|
66 |
+
> [!NOTE]
|
67 |
+
> For encoding the textual documents, the code is the same as the above query encoding, but remove the `'Query: '` prefix.
|
68 |
+
|
69 |
+
|
70 |
+
# Encode Document Screenshot
|
71 |
+
|
72 |
+
```python
|
73 |
+
import requests
|
74 |
+
from io import BytesIO
|
75 |
+
from PIL import Image
|
76 |
+
|
77 |
+
# URLs of the images
|
78 |
+
url1 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v2/resolve/main/animal-llama.png"
|
79 |
+
url2 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v2/resolve/main/meta-llama.png"
|
80 |
+
|
81 |
+
response1 = requests.get(url1)
|
82 |
+
response2 = requests.get(url2)
|
83 |
+
|
84 |
+
doc_image1 = Image.open(BytesIO(response1.content))
|
85 |
+
doc_image2 = Image.open(BytesIO(response2.content))
|
86 |
+
doc_images = [doc_image1, doc_image2]
|
87 |
+
|
88 |
+
doc_messages = []
|
89 |
+
for doc in doc_images:
|
90 |
+
message = [
|
91 |
+
{
|
92 |
+
'role': 'user',
|
93 |
+
'content': [
|
94 |
+
{'type': 'text', 'text': ''},
|
95 |
+
{'type': 'image', 'image': doc, 'resized_height': 784, 'resized_width': 784}
|
96 |
+
|
97 |
+
]
|
98 |
+
}
|
99 |
+
]
|
100 |
+
doc_messages.append(message)
|
101 |
+
doc_texts = [
|
102 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=False) + "<|endoftext|>"
|
103 |
+
for msg in doc_messages
|
104 |
+
]
|
105 |
+
|
106 |
+
doc_image_inputs, doc_video_inputs = process_vision_info(doc_messages)
|
107 |
+
doc_inputs = processor(text=doc_texts, images=doc_image_inputs, videos=doc_video_inputs, padding='longest', return_tensors='pt').to('cuda:0')
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
output = model(**doc_inputs, return_dict=True, output_hidden_states=True)
|
111 |
+
|
112 |
+
doc_embeddings = get_embedding(output.hidden_states[-1])
|
113 |
+
```
|
114 |
+
|
115 |
+
# Compute Similarity
|
116 |
+
```python
|
117 |
+
from torch.nn.functional import cosine_similarity
|
118 |
+
num_queries = query_embeddings.size(0)
|
119 |
+
num_passages = doc_embeddings.size(0)
|
120 |
+
|
121 |
+
for i in range(num_queries):
|
122 |
+
query_embedding = query_embeddings[i].unsqueeze(0)
|
123 |
+
similarities = cosine_similarity(query_embedding, doc_embeddings)
|
124 |
+
print(f"Similarities for Query {i+1}: {similarities.cpu().float().numpy()}")
|
125 |
+
|
126 |
+
# Similarities for Query 1: [0.3282001 0.17449486]
|
127 |
+
# Similarities for Query 2: [0.08133292 0.30867738]
|
128 |
+
```
|