File size: 5,191 Bytes
8a79123 58844a5 2081611 58844a5 9bd2bdd 58844a5 8a79123 62588ff 8a79123 f5c38c6 8a79123 cda3e23 f5c38c6 63672e5 f5c38c6 63672e5 f5c38c6 8a79123 62588ff 8a79123 f5c38c6 137fda9 f5c38c6 137fda9 f5c38c6 62588ff 8a79123 f5c38c6 3f8b454 137fda9 3f8b454 f5c38c6 137fda9 f5c38c6 3f8b454 f5c38c6 137fda9 f5c38c6 137fda9 f5c38c6 137fda9 f5c38c6 137fda9 f5c38c6 62588ff f5c38c6 3f8b454 b2e183b 3f8b454 f5c38c6 137fda9 f5c38c6 8a79123 137fda9 f5c38c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
language:
- en
license: mit
library_name: Tevatron
tags:
- vidore
datasets:
- Tevatron/docmatix-ir
- HuggingFaceM4/Docmatix
---
# DSE-Phi3-Docmatix-V1.0
DSE-Phi3-Docmatix-V1.0 is a bi-encoder model designed to encode document screenshots into dense vectors for document retrieval. The Document Screenshot Embedding ([DSE](https://arxiv.org/abs/2406.11251)) approach captures documents in their original visual format, preserving all information such as text, images, and layout, thus avoiding tedious parsing and potential information loss.
The model, `Tevatron/dse-phi3-docmatix-v1.0`, is trained using the `Tevatron/docmatix-ir` dataset, a variant of `HuggingFaceM4/Docmatix` specifically adapted for training PDF retrievers with Vision Language Models in open-domain question answering scenarios. For more information on dataset filtering and hard negative mining, refer to the [docmatix-ir](https://huggingface.co/datasets/Tevatron/docmatix-ir/blob/main/README.md) dataset page.
## How to Use the Model
### Load the Model and Processor
```python
import torch
from transformers import AutoProcessor, AutoModelForCausalLM
processor = AutoProcessor.from_pretrained('Tevatron/dse-phi3-docmatix-v1.0', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('Tevatron/dse-phi3-docmatix-v1.0', trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False).to('cuda:0')
def get_embedding(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
sequence_lengths = attention_mask.sum(dim=1) - 1
bs = last_hidden_state.shape[0]
reps = last_hidden_state[torch.arange(bs, device=last_hidden_state.device), sequence_lengths]
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
```
### Encode Text Query
```python
queries = ["query: Where can we see Llama?</s>", "query: What is LLaMA model?</s>"]
query_inputs = processor(queries, return_tensors="pt", padding="longest", max_length=128, truncation=True).to('cuda:0')
with torch.no_grad():
output = model(**query_inputs, return_dict=True, output_hidden_states=True)
query_embeddings = get_embedding(output.hidden_states[-1], query_inputs["attention_mask"])
```
### Encode Document Screenshot
```python
from PIL import Image
import requests
from io import BytesIO
# URLs of the images
url1 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v1.0/resolve/main/animal-llama.png"
url2 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v1.0/resolve/main/meta-llama.png"
# Download and open images
response1 = requests.get(url1)
response2 = requests.get(url2)
passage_image1 = Image.open(BytesIO(response1.content))
passage_image2 = Image.open(BytesIO(response2.content))
passage_images = [passage_image1, passage_image2]
passage_prompts = ["<|image_1|>\nWhat is shown in this image?</s>", "<|image_2|>\nWhat is shown in this image?</s>"]
# Process inputs and get embeddings
passage_inputs = processor(passage_prompts, images=passage_images, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
passage_inputs['input_ids'] = passage_inputs['input_ids'].squeeze(0)
passage_inputs['attention_mask'] = passage_inputs['attention_mask'].squeeze(0)
passage_inputs['image_sizes'] = passage_inputs['image_sizes'].squeeze(0)
with torch.no_grad():
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
doc_embeddings = get_embedding(output.hidden_states[-1], passage_inputs["attention_mask"])
```
### Compute Similarity
```python
from torch.nn.functional import cosine_similarity
num_queries = query_embeddings.size(0)
num_passages = doc_embeddings.size(0)
for i in range(num_queries):
query_embedding = query_embeddings[i].unsqueeze(0)
similarities = cosine_similarity(query_embedding, doc_embeddings)
print(f"Similarities for Query {i+1}: {similarities.cpu().float().numpy()}")
```
### Encode Document Text
This DSE checkpoint is warm-up with `Tevatron/msmarco-passage-aug`, thus the model can also effectively encode document as text input.
```python
passage_prompts = [
"The llama (/ˈlɑːmə/; Spanish pronunciation: [ˈʎama] or [ˈʝama]) (Lama glama) is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.</s>",
"Llama (acronym for Large Language Model Meta AI, and formerly stylized as LLaMA) is a family of autoregressive large language models (LLMs) released by Meta AI starting in February 2023.[2][3] The latest version is Llama 3.1, released in July 2024.[4]</s>"
]
passage_inputs = processor(passage_prompts, images=None, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
with torch.no_grad():
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
doc_embeddings = get_embedding(output.hidden_states[-1], passage_inputs["attention_mask"])
for i in range(num_queries):
query_embedding = query_embeddings[i].unsqueeze(0)
similarities = cosine_similarity(query_embedding, doc_embeddings)
print(f"Similarities for Query {i+1}: {similarities.cpu().float().numpy()}")
``` |