Testys commited on
Commit
551c5f7
·
1 Parent(s): 758c36c

Upload ./ with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +75 -0
  2. clf.pkl +3 -0
  3. logs.txt +31 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: sklearn
4
+ tags:
5
+ - tabular-classification
6
+ - baseline-trainer
7
+ ---
8
+
9
+ ## Baseline Model trained on diabetespmxrsn1x to apply classification on diabetes
10
+
11
+ **Metrics of the best model:**
12
+
13
+ accuracy 0.871795
14
+
15
+ average_precision 0.518856
16
+
17
+ roc_auc 0.883333
18
+
19
+ recall_macro 0.883333
20
+
21
+ f1_macro 0.801996
22
+
23
+ Name: DecisionTreeClassifier(class_weight='balanced', max_depth=1), dtype: float64
24
+
25
+
26
+
27
+ **See model plot below:**
28
+
29
+ <style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless
30
+ cholesterol True False ... False False
31
+ glucose True False ... False False
32
+ hdl_chol True False ... False False
33
+ chol_hdl_ratio False False ... True False
34
+ age True False ... False False
35
+ gender False False ... False False
36
+ height False False ... False False
37
+ weight True False ... False False
38
+ bmi False False ... True False
39
+ systolic_bp True False ... False False
40
+ diastolic_bp True False ... False False
41
+ waist False False ... False False
42
+ hip False False ... False False
43
+ waist_hip_ratio False False ... False False[14 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float ... free_string useless
44
+ cholesterol True False ... False False
45
+ glucose True False ... False False
46
+ hdl_chol True False ... False False
47
+ chol_hdl_ratio False False ... True False
48
+ age True False ... False False
49
+ gender False False ... False False
50
+ height False False ... False False
51
+ weight True False ... False False
52
+ bmi False False ... True False
53
+ systolic_bp True False ... False False
54
+ diastolic_bp True False ... False False
55
+ waist False False ... False False
56
+ hip False False ... False False
57
+ waist_hip_ratio False False ... False False[14 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float ... free_string useless
58
+ cholesterol True False ... False False
59
+ glucose True False ... False False
60
+ hdl_chol True False ... False False
61
+ chol_hdl_ratio False False ... True False
62
+ age True False ... False False
63
+ gender False False ... False False
64
+ height False False ... False False
65
+ weight True False ... False False
66
+ bmi False False ... True False
67
+ systolic_bp True False ... False False
68
+ diastolic_bp True False ... False False
69
+ waist False False ... False False
70
+ hip False False ... False False
71
+ waist_hip_ratio False False ... False False[14 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=1)</pre></div></div></div></div></div></div></div>
72
+
73
+ **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).
74
+
75
+ **Logs of training** including the models tried in the process can be found in logs.txt
clf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aa3c1b55abe3f70c7847e682626865932514bc2bf518fb0ce83a8258d26d1ce
3
+ size 10960
logs.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logging training
2
+ Running DummyClassifier()
3
+ accuracy: 0.846 average_precision: 0.154 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.458
4
+ === new best DummyClassifier() (using recall_macro):
5
+ accuracy: 0.846 average_precision: 0.154 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.458
6
+
7
+ Running GaussianNB()
8
+ accuracy: 0.469 average_precision: 0.171 roc_auc: 0.646 recall_macro: 0.550 f1_macro: 0.426
9
+ === new best GaussianNB() (using recall_macro):
10
+ accuracy: 0.469 average_precision: 0.171 roc_auc: 0.646 recall_macro: 0.550 f1_macro: 0.426
11
+
12
+ Running MultinomialNB()
13
+ accuracy: 0.826 average_precision: 0.295 roc_auc: 0.680 recall_macro: 0.542 f1_macro: 0.547
14
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
15
+ accuracy: 0.872 average_precision: 0.519 roc_auc: 0.883 recall_macro: 0.883 f1_macro: 0.802
16
+ === new best DecisionTreeClassifier(class_weight='balanced', max_depth=1) (using recall_macro):
17
+ accuracy: 0.872 average_precision: 0.519 roc_auc: 0.883 recall_macro: 0.883 f1_macro: 0.802
18
+
19
+ Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
20
+ accuracy: 0.885 average_precision: 0.552 roc_auc: 0.822 recall_macro: 0.816 f1_macro: 0.786
21
+ Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
22
+ accuracy: 0.882 average_precision: 0.603 roc_auc: 0.800 recall_macro: 0.835 f1_macro: 0.789
23
+ Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
24
+ accuracy: 0.903 average_precision: 0.782 roc_auc: 0.066 recall_macro: 0.854 f1_macro: 0.820
25
+ Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000)
26
+ accuracy: 0.913 average_precision: 0.762 roc_auc: 0.083 recall_macro: 0.853 f1_macro: 0.834
27
+
28
+ Best model:
29
+ DecisionTreeClassifier(class_weight='balanced', max_depth=1)
30
+ Best Scores:
31
+ accuracy: 0.872 average_precision: 0.519 roc_auc: 0.883 recall_macro: 0.883 f1_macro: 0.802