Testys commited on
Commit
cad2dfa
1 Parent(s): de019b2

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,114 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - pytorch
4
+ - sentiment-analysis
5
+ - yoruba
6
+ - cnn
7
+ - afriberta
8
+ ---
9
+
10
+ # Yoruba Sentiment Analysis with CNN and Afriberta
11
+
12
+ This repository contains a PyTorch model for sentiment analysis of Yoruba text. The model utilizes a Convolutional Neural Network (CNN) architecture on top of a pre-trained Afriberta model, specifically "Davlan/naija-twitter-sentiment-afriberta-large".
13
+
14
+ ## Model Description
15
+
16
+ The model consists of the following components:
17
+
18
+ - **Afriberta Base:** The pre-trained Afriberta model serves as a powerful feature extractor for Yoruba text.
19
+ - **CNN Layers:** Multiple 1D convolutional layers with varying kernel sizes capture local patterns and n-gram features from the Afriberta embeddings.
20
+ - **Max Pooling:** Max pooling layers extract the most salient features from the convolutional outputs.
21
+ - **Dropout:** Dropout regularization helps prevent overfitting.
22
+ - **Fully Connected Layer:** A final fully connected layer maps the concatenated pooled features to sentiment classes.
23
+
24
+ ## Intended Uses & Limitations
25
+
26
+ This model is designed for sentiment analysis of Yoruba text and can be applied to various use cases, such as:
27
+
28
+ - **Social Media Monitoring:** Analyze sentiment expressed in Yoruba tweets or social media posts.
29
+ - **Customer Feedback Analysis:** Understand customer sentiment towards products or services in Yoruba.
30
+ - **Opinion Mining:** Extract opinions and sentiments from Yoruba text data.
31
+
32
+ **Limitations:**
33
+
34
+ - The model's performance may be limited by the size and quality of the training data.
35
+ - It may not generalize well to domains significantly different from the training data.
36
+ - As with any language model, there's a risk of bias and potential for misuse.
37
+
38
+ ## Training and Evaluation Data
39
+
40
+ The model was trained on a dataset of Yoruba tweets annotated with sentiment labels. The dataset was split into training, validation, and test sets.
41
+
42
+ ## Training Procedure
43
+
44
+ The model was trained using the following steps:
45
+
46
+ 1. **Data Preprocessing:** Text data was tokenized using the Afriberta tokenizer.
47
+ 2. **Model Initialization:** The SentimentCNNModel was initialized with the pre-trained Afriberta model and CNN layers.
48
+ 3. **Optimization:** The model was trained using the Adam optimizer and cross-entropy loss.
49
+ 4. **Early Stopping:** Training was stopped early based on validation loss to prevent overfitting.
50
+
51
+ ## Evaluation Results
52
+
53
+ The model achieved the following performance on the test set:
54
+
55
+ - **Test Loss:** [0.6707]
56
+ - **F1-Score:** [0.8095]
57
+
58
+ ## How to Use
59
+
60
+ 1. **Install Dependencies:** Ensure you have PyTorch and Transformers installed:
61
+
62
+ ```bash
63
+ pip install torch transformers
64
+ ```
65
+
66
+ 2. **Load the Model:** You can load the model using the Hugging Face `transformers` library:
67
+
68
+ ```python
69
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
70
+
71
+ model_name = "Testys/cnn_sent_yor"
72
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
73
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
74
+ ```
75
+
76
+ 3. **Make Predictions:** Use the tokenizer to prepare your input text and the model to get predictions:
77
+
78
+ ```python
79
+ def predict(text):
80
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
81
+ outputs = model(**inputs)
82
+ return torch.softmax(outputs.logits, dim=1).items()
83
+
84
+ sample_text = "Your Yoruba text here"
85
+ prediction = predict(sample_text)
86
+ print("Sentiment:", prediction)
87
+ ```
88
+
89
+ ## Citing the Model
90
+
91
+ If you use this model in your research, please cite it using the following format:
92
+
93
+ ```bibtex
94
+ @misc{your_model_name,
95
+ author = {Your Name},
96
+ title = {Yoruba Sentiment Analysis with CNN and Afriberta},
97
+ year = {2024},
98
+ publisher = {Hugging Face's Model Hub},
99
+ journal = {Hugging Face's Model Hub},
100
+ howpublished = {\\url{https://huggingface.co/your_model_name}}
101
+ }
102
+ ```
103
+
104
+ ## License
105
+
106
+ This model is open-sourced under the MIT license. The license allows commercial use, modification, distribution, and private use.
107
+
108
+ ## Contact Information
109
+
110
+ For any queries regarding the model, feel free to reach out via GitHub or direct email:
111
+ - **GitHub:** [https://github.com/dev-tyta]
112
+ - **Email:** [[email protected]]
113
+
114
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"model_type": "CNNForSentimentAnalysis", "num_classes": 2, "max_length": 128, "pretrained_model_name": "Davlan/naija-twitter-sentiment-afriberta-large"}
modeling_cnn_sent.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ from transformers import AutoModel
6
+
7
+ class SentimentCNNModel(nn.Module):
8
+ def __init__(self, transformer_model_name, num_classes, cnn_out_channels=100, cnn_kernel_sizes=[3, 5, 7]):
9
+ super(SentimentCNNModel, self).__init__()
10
+ # Load pre-trained transformer model
11
+ self.transformer = AutoModel.from_pretrained(transformer_model_name)
12
+
13
+ # CNN layers with multiple kernel sizes
14
+ self.convs = nn.ModuleList([
15
+ nn.Conv1d(in_channels=self.transformer.config.hidden_size,
16
+ out_channels=cnn_out_channels,
17
+ kernel_size=k)
18
+ for k in cnn_kernel_sizes
19
+ ])
20
+
21
+ # Dropout layer
22
+ self.dropout = nn.Dropout(0.5)
23
+
24
+ # Fully connected layer
25
+ self.fc = nn.Linear(len(cnn_kernel_sizes) * cnn_out_channels, num_classes)
26
+
27
+ def forward(self, input_ids, attention_mask):
28
+ # Get hidden states from the transformer model
29
+ transformer_outputs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)
30
+ hidden_states = transformer_outputs.last_hidden_state # Shape: (batch_size, seq_len, hidden_size)
31
+
32
+ # Transpose for CNN input: (batch_size, hidden_size, seq_len)
33
+ hidden_states = hidden_states.transpose(1, 2)
34
+
35
+ # Apply convolution and pooling
36
+ conv_outputs = [torch.relu(conv(hidden_states)) for conv in self.convs]
37
+ pooled_outputs = [torch.max(output, dim=2)[0] for output in conv_outputs]
38
+
39
+ # Concatenate pooled outputs and apply dropout
40
+ cat_output = torch.cat(pooled_outputs, dim=1)
41
+ cat_output = self.dropout(cat_output)
42
+
43
+ # Final classification
44
+ logits = self.fc(cat_output)
45
+
46
+ return logits
sent_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f9eb93cf4592a046678a953616e4281e7bba91703e19a563cb7074ed7c69d33
3
+ size 507210373
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6419b3044bff45e94e0553cbb81425fd06046e9294b33555e23fdc69377dba6f
3
+ size 1554839
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "4": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "70005": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": false,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }