Terence3927 commited on
Commit
f31945a
·
1 Parent(s): 2bee6f6

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1564.18 +/- 126.68
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc0961fef5e11dbfd89548d5027f6c4fd080223ee2f1702456c02dd4102e3017
3
+ size 129018
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86b1b55e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86b1b55ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86b1b55f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86b1b5a040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f86b1b5a0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f86b1b5a160>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86b1b5a1f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f86b1b5a280>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86b1b5a310>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86b1b5a3a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86b1b5a430>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f86b1b56240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1668216716257790684,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALeVPL+3qaU/O3SNPhgAVj9xnLa91e5uPtua8D6FXw8/419APwE35r5n80O++cGHPgHYfb/9lxbATi0LP4ldpT4jSzs/a/WHv9d54T44+XY9c8hXvyHZpzw85jK/riSBvIywIz+fLBTAsCUIP8/boL9l2JW963P6PmvkKD9aawRALXC5P2Far78GDys+6wIZvvt0RT+x3kK+7UlgvUNLG0B6laG9mfZwvwVNTD5+RF8/TalXP0PFg785ZSY+VJMnP1TG9r4GeaK/u81fvR2p+b8HL8i/nywUwLAlCD/P26C/+fw8vqcZkr1ezBw/tzvXPj1NXz/MgIw/m9yJPtYBHb5WCVI/sbGKPihrDz7qd6M+LK9Bv7KG378aLvk+cuiMvrXLgD+Hb0S/G4OcPoWHW74NcCW/jUrPPhWZN78EYQw+jLAjP58sFMCwJQg/z9ugvwvLkr6g/O8+dYwpP5u1rj/X3oY/JSe5PjfM+D1oNbq+GCxVP+VPh70ScDi/nJ5svOdVqr5f9uU/UzG9PlDlNT/K/0o/vnsUQDwbAz80ZRo/0VJWv0+MSj59s/o9xdYHPgcvyL8cJd0+P67wv/K0Sz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9Sxw3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjwkyvQAAAADtQO+/AAAAAHMaCD4AAAAAZFr2PwAAAACtqts9AAAAAA1E8j8AAAAAargPvgAAAACMmfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt7d/tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMPJ6D0AAAAAOB8BwAAAAAD//Km9AAAAAIXN6z8AAAAA3wTVPQAAAAD/me8/AAAAAH4OOb0AAAAAnQbsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOWCGLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAQetM9AAAAAI27/r8AAAAApVFGOgAAAACIwt8/AAAAAIPMiz0AAAAA9MjnPwAAAABAeI89AAAAABj0+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB63oU0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdnYMvAAAAABQMeK/AAAAAPICtD0AAAAAVsoAQAAAAAA6bOO7AAAAAOxl8D8AAAAAl7KlPQAAAADgrfK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCEdrBTGYOMAWyUTegDjAF0lEdAqJHmpOvdM3V9lChoBkdAkuMEMCtA9mgHTegDaAhHQKiWpJlJ6IF1fZQoaAZHQIuiwjfNzKdoB03oA2gIR0ComkWhh6SldX2UKGgGR0CUoTIuoP07aAdN6ANoCEdAqJr40CRwInV9lChoBkdAi+FleWv8qGgHTegDaAhHQKicIKvV3EB1fZQoaAZHQIGCIlt0mt1oB03oA2gIR0CooOP8Q7LddX2UKGgGR0CRmpy5qdpZaAdN6ANoCEdAqKSZULlV+HV9lChoBkdAjLLU29+PR2gHTegDaAhHQKilTs1KoQ51fZQoaAZHQIQ7YZCOWB1oB03oA2gIR0CoplzwDvE1dX2UKGgGR0CCnv08NhE0aAdN6ANoCEdAqKsZPXTVlXV9lChoBkdAlVNffj0cwWgHTegDaAhHQKiuzQHAymB1fZQoaAZHQIRPlgUlAu9oB03oA2gIR0Cor4UUO/cndX2UKGgGR0B6+1B3Roh7aAdN6ANoCEdAqLCXIKc/dXV9lChoBkdAgfDd/J/5L2gHTegDaAhHQKi1VuQZGax1fZQoaAZHQI9RTKmsNlRoB03oA2gIR0CouNnNorWidX2UKGgGR0CKnfpQDV6NaAdN6ANoCEdAqLmJb+tKZnV9lChoBkdAlYL9O/L1VmgHTegDaAhHQKi6n/FR51N1fZQoaAZHQJbNmZ3LV4JoB03oA2gIR0Cov05lOGj9dX2UKGgGR0CWzd/Dcdo4aAdN6ANoCEdAqMLIGKQ7tHV9lChoBkdAl41cxTKkmGgHTegDaAhHQKjDeQkona51fZQoaAZHQJbKVjDsMRZoB03oA2gIR0CoxKdlmOENdX2UKGgGR0CXawwOe8PGaAdN6ANoCEdAqMlLyMDOknV9lChoBkdAkSSY2Kl54WgHTegDaAhHQKjM7PAwfyR1fZQoaAZHQJfYaAy2x6hoB03oA2gIR0CozZyqdYnwdX2UKGgGR0CX34WNFSbZaAdN6ANoCEdAqM6ojjaPCHV9lChoBkdAl5s9XgccVGgHTegDaAhHQKjTbbQkX1t1fZQoaAZHQHr+ZnL7oB9oB03oA2gIR0Co1wogmqo7dX2UKGgGR0B0O+FPBSDRaAdN6ANoCEdAqNfIwVTJhnV9lChoBkdAmQ/TTOPeYWgHTegDaAhHQKjY1U1AJLN1fZQoaAZHQJQS9y925hBoB03oA2gIR0Co3YXuVopQdX2UKGgGR0CXOwYBeXzEaAdN6ANoCEdAqOERtpEhJXV9lChoBkdAklnJ00WM0mgHTegDaAhHQKjhw8QqZtx1fZQoaAZHQJXOXnjhky1oB03oA2gIR0Co4s/6fra/dX2UKGgGR0CU7qeTFERbaAdN6ANoCEdAqOeWVzIV/XV9lChoBkdAi4j2icoYvWgHTegDaAhHQKjrJuYx+KF1fZQoaAZHQJOAsh8pkPNoB03oA2gIR0Co69fZdv87dX2UKGgGR0CC+yHBUJfIaAdN6ANoCEdAqOz0AYHgP3V9lChoBkdAjoULb5/LDGgHTegDaAhHQKjxhmcOLBN1fZQoaAZHQIJl5t52QnxoB03oA2gIR0Co9R4150KadX2UKGgGR0CDZyRp1zQvaAdN6ANoCEdAqPXPCEYfn3V9lChoBkdAiU5C+De0omgHTegDaAhHQKj215iVjZt1fZQoaAZHQIg85jawljVoB03oA2gIR0Co+4XwkPc0dX2UKGgGR0CEF7htLteEaAdN6ANoCEdAqP8jv3JxN3V9lChoBkdAgWL6jvd/KGgHTegDaAhHQKj/04rjHXF1fZQoaAZHQIWRY4dZJTVoB03oA2gIR0CpAOFF2FFldX2UKGgGR0CJOUabWmP6aAdN6ANoCEdAqQWcm+j/MnV9lChoBkdAhhB/cer+52gHTegDaAhHQKkJHUNrj5t1fZQoaAZHQIt3/8Q7LdNoB03oA2gIR0CpCcy7f51vdX2UKGgGR0B88rek56t1aAdN6ANoCEdAqQrRVlwtKHV9lChoBkdAgHxLhR64UmgHTegDaAhHQKkPgugYgq51fZQoaAZHQI0RrPa+N99oB03oA2gIR0CpEvlIuoP1dX2UKGgGR0CSWbXYlIEsaAdN6ANoCEdAqROmCCjDbnV9lChoBkdAlBNFSXMQmWgHTegDaAhHQKkUympEQXh1fZQoaAZHQJQmbUWl/H5oB03oA2gIR0CpGYDye7L/dX2UKGgGR0CTnYA7xNItaAdN6ANoCEdAqR0XWUbDM3V9lChoBkdAe6ufPHDJl2gHTegDaAhHQKkdyrDqGDd1fZQoaAZHQJNISblRxcVoB03oA2gIR0CpHtBBAv+PdX2UKGgGR0CUs+vrWy1NaAdN6ANoCEdAqSNpGBnSOXV9lChoBkdAktHW0VrRB2gHTegDaAhHQKkm/Uaya/h1fZQoaAZHQJN5TMC9ytFoB03oA2gIR0CpJ6snZ00WdX2UKGgGR0CQ82u7pV0caAdN6ANoCEdAqSi2AmReTnV9lChoBkdAlKGFAVwgkmgHTegDaAhHQKktaEt/WlN1fZQoaAZHQJBO6fra/RFoB03oA2gIR0CpMNuTibUgdX2UKGgGR0CXXYIpH7P6aAdN6ANoCEdAqTGIwPAfuHV9lChoBkdAk3LnQyAQQWgHTegDaAhHQKkyjjwx33Z1fZQoaAZHQItr+Zw4sEtoB03oA2gIR0CpNzAWrOqvdX2UKGgGR0CSzC5xBE8aaAdN6ANoCEdAqTqfoHLRr3V9lChoBkdAla5kjs2NvWgHTegDaAhHQKk7XHmzSkV1fZQoaAZHQJVIvyAhB7hoB03oA2gIR0CpPHk4ecQRdX2UKGgGR0CW7NDpkf9xaAdN6ANoCEdAqUEF2xIJ7nV9lChoBkdAk1d8olUp/mgHTegDaAhHQKlEpPqs2eh1fZQoaAZHQJhECBlMAWBoB03oA2gIR0CpRVMmv4dqdX2UKGgGR0CUgbbFS88LaAdN6ANoCEdAqUZhWV/tpnV9lChoBkdAlFc5XEIgNmgHTegDaAhHQKlK+UmD15B1fZQoaAZHQJqKSexwAENoB03oA2gIR0CpTnu8CgbqdX2UKGgGR0CWkCZ1V5ryaAdN6ANoCEdAqU8qi0v4/XV9lChoBkdAlXpKDGtITWgHTegDaAhHQKlQLapPykN1fZQoaAZHQJqPsZNwiq1oB03oA2gIR0CpVNPRzBAOdX2UKGgGR0CXGaM6ij+KaAdN6ANoCEdAqVg4bGWD6HV9lChoBkdAmWOuhoM8YGgHTegDaAhHQKlY6h0yP+51fZQoaAZHQJdsdXcQAdZoB03oA2gIR0CpWe4ixFAndX2UKGgGR0CU5NwkgOjJaAdN6ANoCEdAqV6fRzBAOnV9lChoBkdAmQ5Z4GD+SGgHTegDaAhHQKliCqPwNLF1fZQoaAZHQJTrad6LOzJoB03oA2gIR0CpYra4c3l0dX2UKGgGR0CY8VubI91VaAdN6ANoCEdAqWPibhFVk3V9lChoBkdAl/UQBDG96GgHTegDaAhHQKlod0aIeo11fZQoaAZHQJcTtOpKjBVoB03oA2gIR0Cpa/YaHbh4dX2UKGgGR0CTCDuuzQeFaAdN6ANoCEdAqWylBv73wnV9lChoBkdAlPpfmxMWXWgHTegDaAhHQKltr889wFV1fZQoaAZHQJYe3DCP6sRoB03oA2gIR0CpckRR/EwWdX2UKGgGR0CTsrSOBDohaAdN6ANoCEdAqXXe1hLGrHV9lChoBkdAmNwNeD3/P2gHTegDaAhHQKl2it9x6v91fZQoaAZHQJWQJt/FzdVoB03oA2gIR0Cpd5EkrwvydX2UKGgGR0CUuhYgq3EyaAdN6ANoCEdAqXw0uFpPAXV9lChoBkdAmMFaUJOWSmgHTegDaAhHQKl/pFOO8011fZQoaAZHQIDbtSflIVdoB03oA2gIR0CpgFOc2BJ7dX2UKGgGR0CWwZcG1QZXaAdN6ANoCEdAqYFaJ66as3V9lChoBkdAlJcJ2pyZKGgHTegDaAhHQKmGFICEHt51fZQoaAZHQJh7SAqd6LRoB03oA2gIR0CpiXppvgm7dX2UKGgGR0CUjawBYFJQaAdN6ANoCEdAqYonvhIe5nVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a9d18f40f67954a51d2fcd4893962cdd3531883112eb7a182239852e1f01fe7
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cff4c8c32cb13b165f50254bbd415876d94d65b280005c3c1a419dd7eeba9c93
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-125-generic-x86_64-with-glibc2.10 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022
2
+ Python: 3.8.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.0a0+bd13bc6
5
+ GPU Enabled: True
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f86b1b55e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f86b1b55ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f86b1b55f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f86b1b5a040>", "_build": "<function ActorCriticPolicy._build at 0x7f86b1b5a0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f86b1b5a160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f86b1b5a1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f86b1b5a280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f86b1b5a310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f86b1b5a3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f86b1b5a430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f86b1b56240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668216716257790684, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALeVPL+3qaU/O3SNPhgAVj9xnLa91e5uPtua8D6FXw8/419APwE35r5n80O++cGHPgHYfb/9lxbATi0LP4ldpT4jSzs/a/WHv9d54T44+XY9c8hXvyHZpzw85jK/riSBvIywIz+fLBTAsCUIP8/boL9l2JW963P6PmvkKD9aawRALXC5P2Far78GDys+6wIZvvt0RT+x3kK+7UlgvUNLG0B6laG9mfZwvwVNTD5+RF8/TalXP0PFg785ZSY+VJMnP1TG9r4GeaK/u81fvR2p+b8HL8i/nywUwLAlCD/P26C/+fw8vqcZkr1ezBw/tzvXPj1NXz/MgIw/m9yJPtYBHb5WCVI/sbGKPihrDz7qd6M+LK9Bv7KG378aLvk+cuiMvrXLgD+Hb0S/G4OcPoWHW74NcCW/jUrPPhWZN78EYQw+jLAjP58sFMCwJQg/z9ugvwvLkr6g/O8+dYwpP5u1rj/X3oY/JSe5PjfM+D1oNbq+GCxVP+VPh70ScDi/nJ5svOdVqr5f9uU/UzG9PlDlNT/K/0o/vnsUQDwbAz80ZRo/0VJWv0+MSj59s/o9xdYHPgcvyL8cJd0+P67wv/K0Sz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9Sxw3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjwkyvQAAAADtQO+/AAAAAHMaCD4AAAAAZFr2PwAAAACtqts9AAAAAA1E8j8AAAAAargPvgAAAACMmfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt7d/tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMPJ6D0AAAAAOB8BwAAAAAD//Km9AAAAAIXN6z8AAAAA3wTVPQAAAAD/me8/AAAAAH4OOb0AAAAAnQbsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOWCGLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAQetM9AAAAAI27/r8AAAAApVFGOgAAAACIwt8/AAAAAIPMiz0AAAAA9MjnPwAAAABAeI89AAAAABj0+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB63oU0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdnYMvAAAAABQMeK/AAAAAPICtD0AAAAAVsoAQAAAAAA6bOO7AAAAAOxl8D8AAAAAl7KlPQAAAADgrfK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCEdrBTGYOMAWyUTegDjAF0lEdAqJHmpOvdM3V9lChoBkdAkuMEMCtA9mgHTegDaAhHQKiWpJlJ6IF1fZQoaAZHQIuiwjfNzKdoB03oA2gIR0ComkWhh6SldX2UKGgGR0CUoTIuoP07aAdN6ANoCEdAqJr40CRwInV9lChoBkdAi+FleWv8qGgHTegDaAhHQKicIKvV3EB1fZQoaAZHQIGCIlt0mt1oB03oA2gIR0CooOP8Q7LddX2UKGgGR0CRmpy5qdpZaAdN6ANoCEdAqKSZULlV+HV9lChoBkdAjLLU29+PR2gHTegDaAhHQKilTs1KoQ51fZQoaAZHQIQ7YZCOWB1oB03oA2gIR0CoplzwDvE1dX2UKGgGR0CCnv08NhE0aAdN6ANoCEdAqKsZPXTVlXV9lChoBkdAlVNffj0cwWgHTegDaAhHQKiuzQHAymB1fZQoaAZHQIRPlgUlAu9oB03oA2gIR0Cor4UUO/cndX2UKGgGR0B6+1B3Roh7aAdN6ANoCEdAqLCXIKc/dXV9lChoBkdAgfDd/J/5L2gHTegDaAhHQKi1VuQZGax1fZQoaAZHQI9RTKmsNlRoB03oA2gIR0CouNnNorWidX2UKGgGR0CKnfpQDV6NaAdN6ANoCEdAqLmJb+tKZnV9lChoBkdAlYL9O/L1VmgHTegDaAhHQKi6n/FR51N1fZQoaAZHQJbNmZ3LV4JoB03oA2gIR0Cov05lOGj9dX2UKGgGR0CWzd/Dcdo4aAdN6ANoCEdAqMLIGKQ7tHV9lChoBkdAl41cxTKkmGgHTegDaAhHQKjDeQkona51fZQoaAZHQJbKVjDsMRZoB03oA2gIR0CoxKdlmOENdX2UKGgGR0CXawwOe8PGaAdN6ANoCEdAqMlLyMDOknV9lChoBkdAkSSY2Kl54WgHTegDaAhHQKjM7PAwfyR1fZQoaAZHQJfYaAy2x6hoB03oA2gIR0CozZyqdYnwdX2UKGgGR0CX34WNFSbZaAdN6ANoCEdAqM6ojjaPCHV9lChoBkdAl5s9XgccVGgHTegDaAhHQKjTbbQkX1t1fZQoaAZHQHr+ZnL7oB9oB03oA2gIR0Co1wogmqo7dX2UKGgGR0B0O+FPBSDRaAdN6ANoCEdAqNfIwVTJhnV9lChoBkdAmQ/TTOPeYWgHTegDaAhHQKjY1U1AJLN1fZQoaAZHQJQS9y925hBoB03oA2gIR0Co3YXuVopQdX2UKGgGR0CXOwYBeXzEaAdN6ANoCEdAqOERtpEhJXV9lChoBkdAklnJ00WM0mgHTegDaAhHQKjhw8QqZtx1fZQoaAZHQJXOXnjhky1oB03oA2gIR0Co4s/6fra/dX2UKGgGR0CU7qeTFERbaAdN6ANoCEdAqOeWVzIV/XV9lChoBkdAi4j2icoYvWgHTegDaAhHQKjrJuYx+KF1fZQoaAZHQJOAsh8pkPNoB03oA2gIR0Co69fZdv87dX2UKGgGR0CC+yHBUJfIaAdN6ANoCEdAqOz0AYHgP3V9lChoBkdAjoULb5/LDGgHTegDaAhHQKjxhmcOLBN1fZQoaAZHQIJl5t52QnxoB03oA2gIR0Co9R4150KadX2UKGgGR0CDZyRp1zQvaAdN6ANoCEdAqPXPCEYfn3V9lChoBkdAiU5C+De0omgHTegDaAhHQKj215iVjZt1fZQoaAZHQIg85jawljVoB03oA2gIR0Co+4XwkPc0dX2UKGgGR0CEF7htLteEaAdN6ANoCEdAqP8jv3JxN3V9lChoBkdAgWL6jvd/KGgHTegDaAhHQKj/04rjHXF1fZQoaAZHQIWRY4dZJTVoB03oA2gIR0CpAOFF2FFldX2UKGgGR0CJOUabWmP6aAdN6ANoCEdAqQWcm+j/MnV9lChoBkdAhhB/cer+52gHTegDaAhHQKkJHUNrj5t1fZQoaAZHQIt3/8Q7LdNoB03oA2gIR0CpCcy7f51vdX2UKGgGR0B88rek56t1aAdN6ANoCEdAqQrRVlwtKHV9lChoBkdAgHxLhR64UmgHTegDaAhHQKkPgugYgq51fZQoaAZHQI0RrPa+N99oB03oA2gIR0CpEvlIuoP1dX2UKGgGR0CSWbXYlIEsaAdN6ANoCEdAqROmCCjDbnV9lChoBkdAlBNFSXMQmWgHTegDaAhHQKkUympEQXh1fZQoaAZHQJQmbUWl/H5oB03oA2gIR0CpGYDye7L/dX2UKGgGR0CTnYA7xNItaAdN6ANoCEdAqR0XWUbDM3V9lChoBkdAe6ufPHDJl2gHTegDaAhHQKkdyrDqGDd1fZQoaAZHQJNISblRxcVoB03oA2gIR0CpHtBBAv+PdX2UKGgGR0CUs+vrWy1NaAdN6ANoCEdAqSNpGBnSOXV9lChoBkdAktHW0VrRB2gHTegDaAhHQKkm/Uaya/h1fZQoaAZHQJN5TMC9ytFoB03oA2gIR0CpJ6snZ00WdX2UKGgGR0CQ82u7pV0caAdN6ANoCEdAqSi2AmReTnV9lChoBkdAlKGFAVwgkmgHTegDaAhHQKktaEt/WlN1fZQoaAZHQJBO6fra/RFoB03oA2gIR0CpMNuTibUgdX2UKGgGR0CXXYIpH7P6aAdN6ANoCEdAqTGIwPAfuHV9lChoBkdAk3LnQyAQQWgHTegDaAhHQKkyjjwx33Z1fZQoaAZHQItr+Zw4sEtoB03oA2gIR0CpNzAWrOqvdX2UKGgGR0CSzC5xBE8aaAdN6ANoCEdAqTqfoHLRr3V9lChoBkdAla5kjs2NvWgHTegDaAhHQKk7XHmzSkV1fZQoaAZHQJVIvyAhB7hoB03oA2gIR0CpPHk4ecQRdX2UKGgGR0CW7NDpkf9xaAdN6ANoCEdAqUEF2xIJ7nV9lChoBkdAk1d8olUp/mgHTegDaAhHQKlEpPqs2eh1fZQoaAZHQJhECBlMAWBoB03oA2gIR0CpRVMmv4dqdX2UKGgGR0CUgbbFS88LaAdN6ANoCEdAqUZhWV/tpnV9lChoBkdAlFc5XEIgNmgHTegDaAhHQKlK+UmD15B1fZQoaAZHQJqKSexwAENoB03oA2gIR0CpTnu8CgbqdX2UKGgGR0CWkCZ1V5ryaAdN6ANoCEdAqU8qi0v4/XV9lChoBkdAlXpKDGtITWgHTegDaAhHQKlQLapPykN1fZQoaAZHQJqPsZNwiq1oB03oA2gIR0CpVNPRzBAOdX2UKGgGR0CXGaM6ij+KaAdN6ANoCEdAqVg4bGWD6HV9lChoBkdAmWOuhoM8YGgHTegDaAhHQKlY6h0yP+51fZQoaAZHQJdsdXcQAdZoB03oA2gIR0CpWe4ixFAndX2UKGgGR0CU5NwkgOjJaAdN6ANoCEdAqV6fRzBAOnV9lChoBkdAmQ5Z4GD+SGgHTegDaAhHQKliCqPwNLF1fZQoaAZHQJTrad6LOzJoB03oA2gIR0CpYra4c3l0dX2UKGgGR0CY8VubI91VaAdN6ANoCEdAqWPibhFVk3V9lChoBkdAl/UQBDG96GgHTegDaAhHQKlod0aIeo11fZQoaAZHQJcTtOpKjBVoB03oA2gIR0Cpa/YaHbh4dX2UKGgGR0CTCDuuzQeFaAdN6ANoCEdAqWylBv73wnV9lChoBkdAlPpfmxMWXWgHTegDaAhHQKltr889wFV1fZQoaAZHQJYe3DCP6sRoB03oA2gIR0CpckRR/EwWdX2UKGgGR0CTsrSOBDohaAdN6ANoCEdAqXXe1hLGrHV9lChoBkdAmNwNeD3/P2gHTegDaAhHQKl2it9x6v91fZQoaAZHQJWQJt/FzdVoB03oA2gIR0Cpd5EkrwvydX2UKGgGR0CUuhYgq3EyaAdN6ANoCEdAqXw0uFpPAXV9lChoBkdAmMFaUJOWSmgHTegDaAhHQKl/pFOO8011fZQoaAZHQIDbtSflIVdoB03oA2gIR0CpgFOc2BJ7dX2UKGgGR0CWwZcG1QZXaAdN6ANoCEdAqYFaJ66as3V9lChoBkdAlJcJ2pyZKGgHTegDaAhHQKmGFICEHt51fZQoaAZHQJh7SAqd6LRoB03oA2gIR0CpiXppvgm7dX2UKGgGR0CUjawBYFJQaAdN6ANoCEdAqYonvhIe5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-125-generic-x86_64-with-glibc2.10 #141-Ubuntu SMP Wed Aug 10 13:42:03 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.0a0+bd13bc6", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (929 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1564.181652021341, "std_reward": 126.67592705763353, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-12T02:57:27.848316"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc1925cbf13d648a9429fb298428eb6b4e1492a59d237883617825bbeddf6d24
3
+ size 2521