Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,129 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
4 |
+
tags:
|
5 |
+
- art
|
6 |
+
- t2i-adapter
|
7 |
+
- image-to-image
|
8 |
+
- stable-diffusion-xl-diffusers
|
9 |
+
- stable-diffusion-xl
|
10 |
---
|
11 |
+
|
12 |
+
# T2I-Adapter-SDXL - Openpose
|
13 |
+
|
14 |
+
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
|
15 |
+
|
16 |
+
This checkpoint provides conditioning on openpose for the StableDiffusionXL checkpoint. This was a collaboration between **Tencent ARC** and [**Hugging Face**](https://huggingface.co/).
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
- **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models
|
20 |
+
- **Model type:** Diffusion-based text-to-image generation model
|
21 |
+
- **Language(s):** English
|
22 |
+
- **License:** Apache 2.0
|
23 |
+
- **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453).
|
24 |
+
- **Model complexity:**
|
25 |
+
| | SD-V1.4/1.5 | SD-XL | T2I-Adapter | T2I-Adapter-SDXL |
|
26 |
+
| --- | --- |--- |--- |--- |
|
27 |
+
| Parameters | 860M | 2.6B |77 M | 77/79 M | |
|
28 |
+
- **Cite as:**
|
29 |
+
|
30 |
+
@misc{
|
31 |
+
title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models},
|
32 |
+
author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie},
|
33 |
+
year={2023},
|
34 |
+
eprint={2302.08453},
|
35 |
+
archivePrefix={arXiv},
|
36 |
+
primaryClass={cs.CV}
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
### Checkpoints
|
41 |
+
|
42 |
+
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|
43 |
+
|---|---|---|---|
|
44 |
+
|[TencentARC/t2i-adapter-canny-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-canny-sdxl-1.0)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_canny.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_canny.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_canny.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_canny.png"/></a>|
|
45 |
+
|[TencentARC/t2i-adapter-sketch-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-sketch-sdxl-1.0)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_sketch.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_sketch.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_sketch.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_sketch.png"/></a>|
|
46 |
+
|[TencentARC/t2i-adapter-lineart-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-lineart-sdxl-1.0)<br/> *Trained with lineart edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_lin.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_lin.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_lin.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_lin.png"/></a>|
|
47 |
+
|[TencentARC/t2i-adapter-depth-midas-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-depth-midas-sdxl-1.0)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"/></a>|
|
48 |
+
|[TencentARC/t2i-adapter-depth-zoe-sdxl-1.0](https://huggingface.co/TencentARC/t2i-adapter-depth-zoe-sdxl-1.0)<br/> *Trained with Zoe depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_zeo.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_zeo.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_zeo.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_zeo.png"/></a>|
|
49 |
+
|[Adapter/t2iadapter_openpose_sdxlv1](https://huggingface.co/Adapter/t2iadapter_openpose_sdxlv1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png"/></a>|<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/res_pose.png"><img width="64" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/res_pose.png"/></a>|
|
50 |
+
|
51 |
+
|
52 |
+
## Example
|
53 |
+
|
54 |
+
To get started, first install the required dependencies:
|
55 |
+
|
56 |
+
```bash
|
57 |
+
pip install git+https://github.com/huggingface/diffusers.git@t2iadapterxl # for now
|
58 |
+
pip install -U controlnet_aux==0.0.7 # for conditioning models and detectors
|
59 |
+
pip install transformers accelerate safetensors
|
60 |
+
```
|
61 |
+
|
62 |
+
1. Images are first downloaded into the appropriate *control image* format.
|
63 |
+
2. The *control image* and *prompt* are passed to the [`StableDiffusionXLAdapterPipeline`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py#L125).
|
64 |
+
|
65 |
+
Let's have a look at a simple example using the [Canny Adapter](https://huggingface.co/TencentARC/t2i-adapter-lineart-sdxl-1.0).
|
66 |
+
|
67 |
+
- Dependency
|
68 |
+
```py
|
69 |
+
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
|
70 |
+
from diffusers.utils import load_image, make_image_grid
|
71 |
+
from controlnet_aux.midas import MidasDetector
|
72 |
+
import torch
|
73 |
+
|
74 |
+
# load adapter
|
75 |
+
adapter = T2IAdapter.from_pretrained(
|
76 |
+
"TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, varient="fp16"
|
77 |
+
).to("cuda")
|
78 |
+
|
79 |
+
# load euler_a scheduler
|
80 |
+
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
81 |
+
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
82 |
+
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
83 |
+
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
84 |
+
model_id, vae=vae, adapter=adapter, scheduler=euler_a, torch_dtype=torch.float16, variant="fp16",
|
85 |
+
).to("cuda")
|
86 |
+
pipe.enable_xformers_memory_efficient_attention()
|
87 |
+
|
88 |
+
midas_depth = MidasDetector.from_pretrained(
|
89 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
|
90 |
+
).to("cuda")
|
91 |
+
```
|
92 |
+
|
93 |
+
- Condition Image
|
94 |
+
```py
|
95 |
+
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_mid.jpg"
|
96 |
+
image = load_image(url)
|
97 |
+
image = midas_depth(
|
98 |
+
image, detect_resolution=512, image_resolution=1024
|
99 |
+
)
|
100 |
+
```
|
101 |
+
<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/cond_depth_mid.png"/></a>
|
102 |
+
|
103 |
+
- Generation
|
104 |
+
```py
|
105 |
+
prompt = "A photo of a room, 4k photo, highly detailed"
|
106 |
+
negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
|
107 |
+
|
108 |
+
gen_images = pipe(
|
109 |
+
prompt=prompt,
|
110 |
+
negative_prompt=negative_prompt,
|
111 |
+
image=image,
|
112 |
+
num_inference_steps=30,
|
113 |
+
adapter_conditioning_scale=1,
|
114 |
+
guidance_scale=7.5,
|
115 |
+
).images[0]
|
116 |
+
gen_images.save('out_mid.png')
|
117 |
+
```
|
118 |
+
<a href="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"><img width="480" style="margin:0;padding:0;" src="https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/res_depth_mid.png"/></a>
|
119 |
+
|
120 |
+
### Training
|
121 |
+
|
122 |
+
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/t2i_adapter/README_sdxl.md).
|
123 |
+
|
124 |
+
The model is trained on 3M high-resolution image-text pairs from LAION-Aesthetics V2 with
|
125 |
+
|
126 |
+
- Training steps: 35000
|
127 |
+
- Batch size: Data parallel with a single gpu batch size of `16` for a total batch size of `256`.
|
128 |
+
- Learning rate: Constant learning rate of `1e-5`.
|
129 |
+
- Mixed precision: fp16
|