kunyi
commited on
Commit
·
f19719d
1
Parent(s):
42bec8a
Upload 6 files
Browse files- README.md +283 -0
- README_CN.md +280 -0
- config.json +114 -0
- preprocessor_config.json +21 -0
- pytorch_model.bin +3 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,286 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: zero-shot-classification
|
4 |
+
widget:
|
5 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
|
6 |
+
candidate_labels: 演奏, 运动
|
7 |
+
example_title: 猫和狗
|
8 |
---
|
9 |
+
[**中文说明**](README_CN.md) | [**English**](README.md)
|
10 |
+
# Introduction
|
11 |
+
This project aims to provide a better Chinese CLIP model. The training data used in this project consists of publicly accessible image URLs and related Chinese text descriptions, totaling 400 million. After screening, we ultimately used 100 million data for training.
|
12 |
+
This project is produced by QQ-ARC Joint Lab, Tencent PCG.
|
13 |
+
<br><br>
|
14 |
+
|
15 |
+
# Models and Results
|
16 |
+
<span id="model_card"></span>
|
17 |
+
## Model Card
|
18 |
+
QA-CLIP currently has three different open-source models of different sizes, and their model information and download links are shown in the table below:
|
19 |
+
<table border="1" width="100%">
|
20 |
+
<tr align="center">
|
21 |
+
<th>Model</th><th>Ckp</th><th>Params</th><th>Vision</th><th>Params of Vision</th><th>Text</th><th>Params of Text</th><th>Resolution</th>
|
22 |
+
</tr>
|
23 |
+
<tr align="center">
|
24 |
+
<td>QA-CLIP<sub>RN50</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-RN50.pt">Download</a></td><td>77M</td><td>ResNet50</td><td>38M</td><td>RBT3</td><td>39M</td><td>224</td>
|
25 |
+
</tr>
|
26 |
+
<tr align="center">
|
27 |
+
<td>QA-CLIP<sub>ViT-B/16</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-base.pt">Download</a></td><td>188M</td><td>ViT-B/16</td><td>86M</td><td>RoBERTa-wwm-Base</td><td>102M</td><td>224</td>
|
28 |
+
</tr>
|
29 |
+
<tr align="center">
|
30 |
+
<td>QA-CLIP<sub>ViT-L/14</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-large.pt">Download</a></td><td>406M</td><td>ViT-L/14</td><td>304M</td><td>RoBERTa-wwm-Base</td><td>102M</td><td>224</td>
|
31 |
+
</tr>
|
32 |
+
</table>
|
33 |
+
<br>
|
34 |
+
|
35 |
+
## Results
|
36 |
+
We conducted zero-shot tests on [MUGE Retrieval](https://tianchi.aliyun.com/muge), [Flickr30K-CN](https://github.com/li-xirong/cross-lingual-cap), and [COCO-CN](https://github.com/li-xirong/coco-cn) datasets for image-text retrieval tasks. For the image zero-shot classification task, we tested on the ImageNet dataset. The test results are shown in the table below:
|
37 |
+
|
38 |
+
**Flickr30K-CN Zero-shot Retrieval (Official Test Set)**:
|
39 |
+
<table border="1" width="120%">
|
40 |
+
<tr align="center">
|
41 |
+
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
|
42 |
+
</tr>
|
43 |
+
<tr align="center">
|
44 |
+
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
|
45 |
+
</tr>
|
46 |
+
<tr align="center">
|
47 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>48.8</td><td>76.0</td><td>84.6</td><td>60.0</td><td>85.9</td><td>92.0</td>
|
48 |
+
</tr>
|
49 |
+
<tr align="center">
|
50 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>50.5</b></td><td><b>77.4</b></td><td><b>86.1</b></td><td><b>67.1</b></td><td><b>87.9</b></td><td><b>93.2</b></td>
|
51 |
+
</tr>
|
52 |
+
<tr align="center">
|
53 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>62.7</td><td>86.9</td><td>92.8</td><td>74.6</td><td>93.5</td><td>97.1</td>
|
54 |
+
</tr>
|
55 |
+
<tr align="center">
|
56 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>63.8</b></td><td><b>88.0</b></td><td><b>93.2</b></td><td><b>78.4</b></td><td><b>96.1</b></td><td><b>98.5</b></td>
|
57 |
+
</tr>
|
58 |
+
<tr align="center">
|
59 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>68.0</td><td>89.7</td><td>94.4</td><td>80.2</td><td>96.6</td><td>98.2</td>
|
60 |
+
</tr>
|
61 |
+
<tr align="center">
|
62 |
+
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td><b>69.7</b></td><td>90.1</td><td>94.8</td><td>84.8</td><td>97.7</td><td>99.1</td>
|
63 |
+
</tr>
|
64 |
+
<tr align="center">
|
65 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>69.3</td><td><b>90.3</b></td><td><b>94.7</b></td><td><b>85.3</b></td><td><b>97.9</b></td><td><b>99.2</b></td>
|
66 |
+
</tr>
|
67 |
+
</table>
|
68 |
+
<br>
|
69 |
+
|
70 |
+
**MUGE Zero-shot Retrieval (Official Validation Set)**:
|
71 |
+
<table border="1" width="120%">
|
72 |
+
<tr align="center">
|
73 |
+
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
|
74 |
+
</tr>
|
75 |
+
<tr align="center">
|
76 |
+
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
|
77 |
+
</tr>
|
78 |
+
<tr align="center">
|
79 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>42.6</td><td>68.5</td><td>78.0</td><td>30.0</td><td>56.2</td><td>66.9</td>
|
80 |
+
</tr>
|
81 |
+
<tr align="center">
|
82 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>44.0</b></td><td><b>69.9</b></td><td><b>79.5</b></td><td><b>32.4</b></td><td><b>59.5</b></td><td><b>70.3</b></td>
|
83 |
+
</tr>
|
84 |
+
<tr align="center">
|
85 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>52.1</td><td>76.7</td><td>84.4</td><td>38.7</td><td>65.6</td><td>75.1</td>
|
86 |
+
</tr>
|
87 |
+
<tr align="center">
|
88 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>53.2</b></td><td><b>77.7</b></td><td><b>85.1</b></td><td><b>40.7</b></td><td><b>68.2</b></td><td><b>77.2</b></td>
|
89 |
+
</tr>
|
90 |
+
<tr align="center">
|
91 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>56.4</td><td>79.8</td><td>86.2</td><td>42.6</td><td>69.8</td><td>78.6</td>
|
92 |
+
</tr>
|
93 |
+
<tr align="center">
|
94 |
+
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td>29.6</td><td>49.9</td><td>58.8</td><td>21.4</td><td>42.0</td><td>51.9</td>
|
95 |
+
</tr>
|
96 |
+
<tr align="center">
|
97 |
+
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>57.4</b></td><td><b>81.0</b></td><td><b>87.7</b></td><td><b>45.5</b></td><td><b>73.0</b></td><td><b>81.4</b></td>
|
98 |
+
</tr>
|
99 |
+
</table>
|
100 |
+
<br>
|
101 |
+
|
102 |
+
**COCO-CN Zero-shot Retrieval (Official Test Set)**:
|
103 |
+
<table border="1" width="120%">
|
104 |
+
<tr align="center">
|
105 |
+
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
|
106 |
+
</tr>
|
107 |
+
<tr align="center">
|
108 |
+
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
|
109 |
+
</tr>
|
110 |
+
<tr align="center">
|
111 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>48.1</td><td>81.3</td><td>90.5</td><td>50.9</td><td>81.1</td><td>90.5</td>
|
112 |
+
</tr>
|
113 |
+
<tr align="center">
|
114 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>50.1</b></td><td><b>82.5</b></td><td><b>91.7</b></td><td><b>56.7</b></td><td><b>85.2</b></td><td><b>92.9</b></td>
|
115 |
+
</tr>
|
116 |
+
<tr align="center">
|
117 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>62.2</td><td>87.1</td><td>94.9</td><td>56.3</td><td>84.0</td><td>93.3</td>
|
118 |
+
</tr>
|
119 |
+
<tr align="center">
|
120 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>62.9</b></td><td><b>87.7</b></td><td><b>94.7</b></td><td><b>61.5</b></td><td><b>87.6</b></td><td><b>94.8</b></td>
|
121 |
+
</tr>
|
122 |
+
<tr align="center">
|
123 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>64.9</td><td>88.8</td><td>94.2</td><td>60.6</td><td>84.4</td><td>93.1</td>
|
124 |
+
</tr>
|
125 |
+
<tr align="center">
|
126 |
+
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td>63.5</td><td>87.6</td><td>93.5</td><td>62.6</td><td><b>88.5</b></td><td><b>95.9</b></td>
|
127 |
+
</tr>
|
128 |
+
<tr align="center">
|
129 |
+
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>65.7</b></td><td><b>90.2</b></td><td><b>95.0</b></td><td><b>64.5</b></td><td>88.3</td><td>95.1</td>
|
130 |
+
</tr>
|
131 |
+
</table>
|
132 |
+
<br>
|
133 |
+
|
134 |
+
**Zero-shot Image Classification on ImageNet**:
|
135 |
+
<table border="1" width="120%">
|
136 |
+
<tr align="center">
|
137 |
+
<th>Task</th><th colspan="1">ImageNet</th>
|
138 |
+
</tr>
|
139 |
+
<tr align="center">
|
140 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>33.5</td>
|
141 |
+
</tr>
|
142 |
+
<tr align="center">
|
143 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>35.5</b></td>
|
144 |
+
</tr>
|
145 |
+
<tr align="center">
|
146 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>48.4</td>
|
147 |
+
</tr>
|
148 |
+
<tr align="center">
|
149 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>49.7</b></td>
|
150 |
+
</tr>
|
151 |
+
<tr align="center">
|
152 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>54.7</td>
|
153 |
+
</tr>
|
154 |
+
<tr align="center">
|
155 |
+
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>55.8</b></td>
|
156 |
+
</tr>
|
157 |
+
</table>
|
158 |
+
<br>
|
159 |
+
|
160 |
+
<br><br>
|
161 |
+
|
162 |
+
|
163 |
+
# Getting Started
|
164 |
+
## Installation Requirements
|
165 |
+
Environment configuration requirements:
|
166 |
+
|
167 |
+
* python >= 3.6.4
|
168 |
+
* pytorch >= 1.8.0 (with torchvision >= 0.9.0)
|
169 |
+
* CUDA Version >= 10.2
|
170 |
+
|
171 |
+
Install required packages:
|
172 |
+
```bash
|
173 |
+
cd /yourpath/QA-CLIP-main
|
174 |
+
pip install -r requirements.txt
|
175 |
+
```
|
176 |
+
|
177 |
+
## Inference Code
|
178 |
+
```bash
|
179 |
+
export PYTHONPATH=/yourpath/QA-CLIP-main
|
180 |
+
```
|
181 |
+
Inference code example:
|
182 |
+
```python
|
183 |
+
import torch
|
184 |
+
from PIL import Image
|
185 |
+
|
186 |
+
import clip as clip
|
187 |
+
from clip import load_from_name, available_models
|
188 |
+
print("Available models:", available_models())
|
189 |
+
# Available models: ['ViT-B-16', 'ViT-L-14', 'RN50']
|
190 |
+
|
191 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
192 |
+
model, preprocess = load_from_name("ViT-B-16", device=device, download_root='./')
|
193 |
+
model.eval()
|
194 |
+
image = preprocess(Image.open("examples/pokemon.jpeg")).unsqueeze(0).to(device)
|
195 |
+
text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device)
|
196 |
+
|
197 |
+
with torch.no_grad():
|
198 |
+
image_features = model.encode_image(image)
|
199 |
+
text_features = model.encode_text(text)
|
200 |
+
# Normalize the features. Please use the normalized features for downstream tasks.
|
201 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
202 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
203 |
+
|
204 |
+
logits_per_image, logits_per_text = model.get_similarity(image, text)
|
205 |
+
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
206 |
+
|
207 |
+
print("Label probs:", probs)
|
208 |
+
```
|
209 |
+
<br><br>
|
210 |
+
|
211 |
+
## Prediction and Evaluation
|
212 |
+
|
213 |
+
### Download Image-text Retrieval Test Dataset
|
214 |
+
In Project <b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>, the test set has already been preprocessed. Here is the download link they provided:
|
215 |
+
|
216 |
+
MUGE dataset:[download link](https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/MUGE.zip)
|
217 |
+
|
218 |
+
Flickr30K-CN dataset:[download link](https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/Flickr30k-CN.zip)
|
219 |
+
|
220 |
+
Additionally, obtaining the [COCO-CN](https://github.com/li-xirong/coco-cn) dataset requires applying to the original author.
|
221 |
+
|
222 |
+
### Download ImageNet Dataset
|
223 |
+
Please download the raw data yourself,[Chinese Label](http://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/ImageNet-1K/label_cn.txt) and [English Label](http://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/ImageNet-1K/label.txt) are provided by Project <b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>
|
224 |
+
### Image-text Retrieval Evaluation
|
225 |
+
The image-text retrieval evaluation code can be referred to as follows:
|
226 |
+
```bash
|
227 |
+
split=test # Designate the computation of features for the valid or test set
|
228 |
+
resume=your_ckp_path
|
229 |
+
DATAPATH=your_DATAPATH
|
230 |
+
dataset_name=Flickr30k-CN
|
231 |
+
# dataset_name=MUGE
|
232 |
+
|
233 |
+
python -u eval/extract_features.py \
|
234 |
+
--extract-image-feats \
|
235 |
+
--extract-text-feats \
|
236 |
+
--image-data="${DATAPATH}/datasets/${dataset_name}/lmdb/${split}/imgs" \
|
237 |
+
--text-data="${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl" \
|
238 |
+
--img-batch-size=32 \
|
239 |
+
--text-batch-size=32 \
|
240 |
+
--context-length=52 \
|
241 |
+
--resume=${resume} \
|
242 |
+
--vision-model=ViT-B-16 \
|
243 |
+
--text-model=RoBERTa-wwm-ext-base-chinese
|
244 |
+
|
245 |
+
python -u eval/make_topk_predictions.py \
|
246 |
+
--image-feats="${DATAPATH}/datasets/${dataset_name}/${split}_imgs.img_feat.jsonl" \
|
247 |
+
--text-feats="${DATAPATH}/datasets/${dataset_name}/${split}_texts.txt_feat.jsonl" \
|
248 |
+
--top-k=10 \
|
249 |
+
--eval-batch-size=32768 \
|
250 |
+
--output="${DATAPATH}/datasets/${dataset_name}/${split}_predictions.jsonl"
|
251 |
+
|
252 |
+
python -u eval/make_topk_predictions_tr.py \
|
253 |
+
--image-feats="${DATAPATH}/datasets/${dataset_name}/${split}_imgs.img_feat.jsonl" \
|
254 |
+
--text-feats="${DATAPATH}/datasets/${dataset_name}/${split}_texts.txt_feat.jsonl" \
|
255 |
+
--top-k=10 \
|
256 |
+
--eval-batch-size=32768 \
|
257 |
+
--output="${DATAPATH}/datasets/${dataset_name}/${split}_tr_predictions.jsonl"
|
258 |
+
|
259 |
+
python eval/evaluation.py \
|
260 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl \
|
261 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_predictions.jsonl \
|
262 |
+
${DATAPATH}/datasets/${dataset_name}/output1.json
|
263 |
+
cat ${DATAPATH}/datasets/${dataset_name}/output1.json
|
264 |
+
|
265 |
+
python eval/transform_ir_annotation_to_tr.py \
|
266 |
+
--input ${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl
|
267 |
+
|
268 |
+
python eval/evaluation_tr.py \
|
269 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_texts.tr.jsonl \
|
270 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_tr_predictions.jsonl \
|
271 |
+
${DATAPATH}/datasets/${dataset_name}/output2.json
|
272 |
+
cat ${DATAPATH}/datasets/${dataset_name}/output2.json
|
273 |
+
```
|
274 |
+
|
275 |
+
### ImageNet Zero-shot Classification
|
276 |
+
The ImageNet zero-shot classification code can be referred to as follows
|
277 |
+
```bash
|
278 |
+
bash scripts/zeroshot_eval.sh 0 \
|
279 |
+
${DATAPATH} imagenet \
|
280 |
+
ViT-B-16 RoBERTa-wwm-ext-base-chinese \
|
281 |
+
./pretrained_weights/QA-CLIP-base.pt
|
282 |
+
```
|
283 |
+
<br><br>
|
284 |
+
# Acknowledgments
|
285 |
+
The project code is based on implementation of <b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>, and we are very grateful for their outstanding open-source contributions.
|
286 |
+
<br><br>
|
README_CN.md
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[**中文说明**](README_CN.md) | [**English**](README.md)
|
2 |
+
# 项目介绍
|
3 |
+
本项目旨在提供更好的中文CLIP模型。该项目使用的训练数据均为公开可访问的图像URL及相关中文文本描述,总量达到400M。经过筛选后,我们最终使用了100M的数据进行训练。
|
4 |
+
本项目于QQ-ARC Joint Lab, Tencent PCG完成
|
5 |
+
<br><br>
|
6 |
+
|
7 |
+
# 模型及实验
|
8 |
+
<span id="model_card"></span>
|
9 |
+
## 模型规模 & 下载链接
|
10 |
+
QA-CLIP目前开源3个不同规模,其模型信息和下载方式见下表:
|
11 |
+
|
12 |
+
<table border="1" width="100%">
|
13 |
+
<tr align="center">
|
14 |
+
<th>模型规模</th><th>下载链接</th><th>参数量</th><th>视觉侧骨架</th><th>视觉侧参数量</th><th>文本侧骨架</th><th>文本侧参数量</th><th>分辨率</th>
|
15 |
+
</tr>
|
16 |
+
<tr align="center">
|
17 |
+
<td>QA-CLIP<sub>RN50</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-RN50.pt">Download</a></td><td>77M</td><td>ResNet50</td><td>38M</td><td>RBT3</td><td>39M</td><td>224</td>
|
18 |
+
</tr>
|
19 |
+
<tr align="center">
|
20 |
+
<td>QA-CLIP<sub>ViT-B/16</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-base.pt">Download</a></td><td>188M</td><td>ViT-B/16</td><td>86M</td><td>RoBERTa-wwm-Base</td><td>102M</td><td>224</td>
|
21 |
+
</tr>
|
22 |
+
<tr align="center">
|
23 |
+
<td>QA-CLIP<sub>ViT-L/14</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-large.pt">Download</a></td><td>406M</td><td>ViT-L/14</td><td>304M</td><td>RoBERTa-wwm-Base</td><td>102M</td><td>224</td>
|
24 |
+
</tr>
|
25 |
+
</table>
|
26 |
+
<br>
|
27 |
+
|
28 |
+
## 实验结果
|
29 |
+
针对图文检索任务,我们在[MUGE Retrieval](https://tianchi.aliyun.com/muge)、[Flickr30K-CN](https://github.com/li-xirong/cross-lingual-cap)和[COCO-CN](https://github.com/li-xirong/coco-cn)上进行了zero-shot测试。
|
30 |
+
针对图像零样本分类任务,我们在ImageNet数据集上进行了测试。测试结果见下表:
|
31 |
+
|
32 |
+
|
33 |
+
**Flickr30K-CN Zero-shot Retrieval (Official Test Set)**:
|
34 |
+
<table border="1" width="120%">
|
35 |
+
<tr align="center">
|
36 |
+
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
|
37 |
+
</tr>
|
38 |
+
<tr align="center">
|
39 |
+
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
|
40 |
+
</tr>
|
41 |
+
<tr align="center">
|
42 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>48.8</td><td>76.0</td><td>84.6</td><td>60.0</td><td>85.9</td><td>92.0</td>
|
43 |
+
</tr>
|
44 |
+
<tr align="center">
|
45 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>50.5</b></td><td><b>77.4</b></td><td><b>86.1</b></td><td><b>67.1</b></td><td><b>87.9</b></td><td><b>93.2</b></td>
|
46 |
+
</tr>
|
47 |
+
<tr align="center">
|
48 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>62.7</td><td>86.9</td><td>92.8</td><td>74.6</td><td>93.5</td><td>97.1</td>
|
49 |
+
</tr>
|
50 |
+
<tr align="center">
|
51 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>63.8</b></td><td><b>88.0</b></td><td><b>93.2</b></td><td><b>78.4</b></td><td><b>96.1</b></td><td><b>98.5</b></td>
|
52 |
+
</tr>
|
53 |
+
<tr align="center">
|
54 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>68.0</td><td>89.7</td><td>94.4</td><td>80.2</td><td>96.6</td><td>98.2</td>
|
55 |
+
</tr>
|
56 |
+
<tr align="center">
|
57 |
+
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td><b>69.7</b></td><td>90.1</td><td>94.8</td><td>84.8</td><td>97.7</td><td>99.1</td>
|
58 |
+
</tr>
|
59 |
+
<tr align="center">
|
60 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>69.3</td><td><b>90.3</b></td><td><b>94.7</b></td><td><b>85.3</b></td><td><b>97.9</b></td><td><b>99.2</b></td>
|
61 |
+
</tr>
|
62 |
+
</table>
|
63 |
+
<br>
|
64 |
+
|
65 |
+
**MUGE Zero-shot Retrieval (Official Validation Set)**:
|
66 |
+
<table border="1" width="120%">
|
67 |
+
<tr align="center">
|
68 |
+
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
|
69 |
+
</tr>
|
70 |
+
<tr align="center">
|
71 |
+
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
|
72 |
+
</tr>
|
73 |
+
<tr align="center">
|
74 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>42.6</td><td>68.5</td><td>78.0</td><td>30.0</td><td>56.2</td><td>66.9</td>
|
75 |
+
</tr>
|
76 |
+
<tr align="center">
|
77 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>44.0</b></td><td><b>69.9</b></td><td><b>79.5</b></td><td><b>32.4</b></td><td><b>59.5</b></td><td><b>70.3</b></td>
|
78 |
+
</tr>
|
79 |
+
<tr align="center">
|
80 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>52.1</td><td>76.7</td><td>84.4</td><td>38.7</td><td>65.6</td><td>75.1</td>
|
81 |
+
</tr>
|
82 |
+
<tr align="center">
|
83 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>53.2</b></td><td><b>77.7</b></td><td><b>85.1</b></td><td><b>40.7</b></td><td><b>68.2</b></td><td><b>77.2</b></td>
|
84 |
+
</tr>
|
85 |
+
<tr align="center">
|
86 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>56.4</td><td>79.8</td><td>86.2</td><td>42.6</td><td>69.8</td><td>78.6</td>
|
87 |
+
</tr>
|
88 |
+
<tr align="center">
|
89 |
+
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td>29.6</td><td>49.9</td><td>58.8</td><td>21.4</td><td>42.0</td><td>51.9</td>
|
90 |
+
</tr>
|
91 |
+
<tr align="center">
|
92 |
+
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>57.4</b></td><td><b>81.0</b></td><td><b>87.7</b></td><td><b>45.5</b></td><td><b>73.0</b></td><td><b>81.4</b></td>
|
93 |
+
</tr>
|
94 |
+
</table>
|
95 |
+
<br>
|
96 |
+
|
97 |
+
**COCO-CN Zero-shot Retrieval (Official Test Set)**:
|
98 |
+
<table border="1" width="120%">
|
99 |
+
<tr align="center">
|
100 |
+
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
|
101 |
+
</tr>
|
102 |
+
<tr align="center">
|
103 |
+
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
|
104 |
+
</tr>
|
105 |
+
<tr align="center">
|
106 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>48.1</td><td>81.3</td><td>90.5</td><td>50.9</td><td>81.1</td><td>90.5</td>
|
107 |
+
</tr>
|
108 |
+
<tr align="center">
|
109 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>50.1</b></td><td><b>82.5</b></td><td><b>91.7</b></td><td><b>56.7</b></td><td><b>85.2</b></td><td><b>92.9</b></td>
|
110 |
+
</tr>
|
111 |
+
<tr align="center">
|
112 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>62.2</td><td>87.1</td><td>94.9</td><td>56.3</td><td>84.0</td><td>93.3</td>
|
113 |
+
</tr>
|
114 |
+
<tr align="center">
|
115 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>62.9</b></td><td><b>87.7</b></td><td><b>94.7</b></td><td><b>61.5</b></td><td><b>87.6</b></td><td><b>94.8</b></td>
|
116 |
+
</tr>
|
117 |
+
<tr align="center">
|
118 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>64.9</td><td>88.8</td><td>94.2</td><td>60.6</td><td>84.4</td><td>93.1</td>
|
119 |
+
</tr>
|
120 |
+
<tr align="center">
|
121 |
+
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td>63.5</td><td>87.6</td><td>93.5</td><td>62.6</td><td><b>88.5</b></td><td><b>95.9</b></td>
|
122 |
+
</tr>
|
123 |
+
<tr align="center">
|
124 |
+
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>65.7</b></td><td><b>90.2</b></td><td><b>95.0</b></td><td><b>64.5</b></td><td>88.3</td><td>95.1</td>
|
125 |
+
</tr>
|
126 |
+
</table>
|
127 |
+
<br>
|
128 |
+
|
129 |
+
**Zero-shot Image Classification on ImageNet**:
|
130 |
+
<table border="1" width="120%">
|
131 |
+
<tr align="center">
|
132 |
+
<th>Task</th><th colspan="1">ImageNet</th>
|
133 |
+
</tr>
|
134 |
+
<tr align="center">
|
135 |
+
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>33.5</td>
|
136 |
+
</tr>
|
137 |
+
<tr align="center">
|
138 |
+
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>35.5</b></td>
|
139 |
+
</tr>
|
140 |
+
<tr align="center">
|
141 |
+
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>48.4</td>
|
142 |
+
</tr>
|
143 |
+
<tr align="center">
|
144 |
+
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>49.7</b></td>
|
145 |
+
</tr>
|
146 |
+
<tr align="center">
|
147 |
+
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>54.7</td>
|
148 |
+
</tr>
|
149 |
+
<tr align="center">
|
150 |
+
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>55.8</b></td>
|
151 |
+
</tr>
|
152 |
+
</table>
|
153 |
+
<br>
|
154 |
+
|
155 |
+
<br><br>
|
156 |
+
|
157 |
+
|
158 |
+
# 使用教程
|
159 |
+
## 安装要求
|
160 |
+
环境配置要求:
|
161 |
+
|
162 |
+
* python >= 3.6.4
|
163 |
+
* pytorch >= 1.8.0 (with torchvision >= 0.9.0)
|
164 |
+
* CUDA Version >= 10.2
|
165 |
+
|
166 |
+
安装本项目所需库
|
167 |
+
```bash
|
168 |
+
cd /yourpath/QA-CLIP-main
|
169 |
+
pip install -r requirements.txt
|
170 |
+
```
|
171 |
+
|
172 |
+
## 推理代码
|
173 |
+
```bash
|
174 |
+
export PYTHONPATH=/yourpath/QA-CLIP-main
|
175 |
+
```
|
176 |
+
推理代码示例:
|
177 |
+
```python
|
178 |
+
import torch
|
179 |
+
from PIL import Image
|
180 |
+
|
181 |
+
import clip as clip
|
182 |
+
from clip import load_from_name, available_models
|
183 |
+
print("Available models:", available_models())
|
184 |
+
# Available models: ['ViT-B-16', 'ViT-L-14', 'RN50']
|
185 |
+
|
186 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
187 |
+
model, preprocess = load_from_name("ViT-B-16", device=device, download_root='./')
|
188 |
+
model.eval()
|
189 |
+
image = preprocess(Image.open("examples/pokemon.jpeg")).unsqueeze(0).to(device)
|
190 |
+
text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device)
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
image_features = model.encode_image(image)
|
194 |
+
text_features = model.encode_text(text)
|
195 |
+
# 对特征进行归一化,请使用归一化后的图文特征用于下游任务
|
196 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
197 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
198 |
+
|
199 |
+
logits_per_image, logits_per_text = model.get_similarity(image, text)
|
200 |
+
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
201 |
+
|
202 |
+
print("Label probs:", probs)
|
203 |
+
```
|
204 |
+
<br><br>
|
205 |
+
|
206 |
+
## 预测及评估
|
207 |
+
|
208 |
+
### 图文检索测试数据集下载
|
209 |
+
<b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>项目中已经预处理好测试集,这是他们提供的下载链接:
|
210 |
+
|
211 |
+
MUGE数据:[下载链接](https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/MUGE.zip)
|
212 |
+
|
213 |
+
Flickr30K-CN数据:[下载链接](https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/Flickr30k-CN.zip)
|
214 |
+
|
215 |
+
另外[COCO-CN](https://github.com/li-xirong/coco-cn)数据的获取需要向原作者进行申请
|
216 |
+
### ImageNet数据集下载
|
217 |
+
原始数据请自行下载,[中文标签](http://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/ImageNet-1K/label_cn.txt)和[英文标签](http://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/ImageNet-1K/label.txt)同样由<b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>项目提供
|
218 |
+
### 图文检索评估
|
219 |
+
图文检索评估代码可以参考如下:
|
220 |
+
```bash
|
221 |
+
split=test # 指定计算valid或test集特征
|
222 |
+
resume=your_ckp_path
|
223 |
+
DATAPATH=your_DATAPATH
|
224 |
+
dataset_name=Flickr30k-CN
|
225 |
+
# dataset_name=MUGE
|
226 |
+
|
227 |
+
python -u eval/extract_features.py \
|
228 |
+
--extract-image-feats \
|
229 |
+
--extract-text-feats \
|
230 |
+
--image-data="${DATAPATH}/datasets/${dataset_name}/lmdb/${split}/imgs" \
|
231 |
+
--text-data="${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl" \
|
232 |
+
--img-batch-size=32 \
|
233 |
+
--text-batch-size=32 \
|
234 |
+
--context-length=52 \
|
235 |
+
--resume=${resume} \
|
236 |
+
--vision-model=ViT-B-16 \
|
237 |
+
--text-model=RoBERTa-wwm-ext-base-chinese
|
238 |
+
|
239 |
+
python -u eval/make_topk_predictions.py \
|
240 |
+
--image-feats="${DATAPATH}/datasets/${dataset_name}/${split}_imgs.img_feat.jsonl" \
|
241 |
+
--text-feats="${DATAPATH}/datasets/${dataset_name}/${split}_texts.txt_feat.jsonl" \
|
242 |
+
--top-k=10 \
|
243 |
+
--eval-batch-size=32768 \
|
244 |
+
--output="${DATAPATH}/datasets/${dataset_name}/${split}_predictions.jsonl"
|
245 |
+
|
246 |
+
python -u eval/make_topk_predictions_tr.py \
|
247 |
+
--image-feats="${DATAPATH}/datasets/${dataset_name}/${split}_imgs.img_feat.jsonl" \
|
248 |
+
--text-feats="${DATAPATH}/datasets/${dataset_name}/${split}_texts.txt_feat.jsonl" \
|
249 |
+
--top-k=10 \
|
250 |
+
--eval-batch-size=32768 \
|
251 |
+
--output="${DATAPATH}/datasets/${dataset_name}/${split}_tr_predictions.jsonl"
|
252 |
+
|
253 |
+
python eval/evaluation.py \
|
254 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl \
|
255 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_predictions.jsonl \
|
256 |
+
${DATAPATH}/datasets/${dataset_name}/output1.json
|
257 |
+
cat ${DATAPATH}/datasets/${dataset_name}/output1.json
|
258 |
+
|
259 |
+
python eval/transform_ir_annotation_to_tr.py \
|
260 |
+
--input ${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl
|
261 |
+
|
262 |
+
python eval/evaluation_tr.py \
|
263 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_texts.tr.jsonl \
|
264 |
+
${DATAPATH}/datasets/${dataset_name}/${split}_tr_predictions.jsonl \
|
265 |
+
${DATAPATH}/datasets/${dataset_name}/output2.json
|
266 |
+
cat ${DATAPATH}/datasets/${dataset_name}/output2.json
|
267 |
+
```
|
268 |
+
|
269 |
+
### ImageNet零样本分类
|
270 |
+
ImageNet零样本分类的代码参考如下
|
271 |
+
```bash
|
272 |
+
bash scripts/zeroshot_eval.sh 0 \
|
273 |
+
${DATAPATH} imagenet \
|
274 |
+
ViT-B-16 RoBERTa-wwm-ext-base-chinese \
|
275 |
+
./pretrained_weights/QA-CLIP-base.pt
|
276 |
+
```
|
277 |
+
<br><br>
|
278 |
+
# 致谢
|
279 |
+
项目代码基于<b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>实现,非常感谢他们优秀的开源工作。
|
280 |
+
<br><br>
|
config.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ChineseCLIPModel"
|
4 |
+
],
|
5 |
+
"initializer_factor": 1.0,
|
6 |
+
"logit_scale_init_value": 2.6592,
|
7 |
+
"model_type": "chinese_clip",
|
8 |
+
"projection_dim": 512,
|
9 |
+
"text_config": {
|
10 |
+
"architectures": [
|
11 |
+
"ChineseCLIPTextModel"
|
12 |
+
],
|
13 |
+
"attention_probs_dropout_prob": 0.1,
|
14 |
+
"bos_token_id": 0,
|
15 |
+
"directionality": "bidi",
|
16 |
+
"eos_token_id": 2,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "chinese_clip_text_model",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_hidden_layers": 12,
|
27 |
+
"output_past": true,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"pooler_fc_size": 768,
|
30 |
+
"pooler_num_attention_heads": 12,
|
31 |
+
"pooler_num_fc_layers": 3,
|
32 |
+
"pooler_size_per_head": 128,
|
33 |
+
"pooler_type": "first_token_transform",
|
34 |
+
"type_vocab_size": 2,
|
35 |
+
"vocab_size": 21128
|
36 |
+
},
|
37 |
+
"text_config_dict": null,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": null,
|
40 |
+
"vision_config": {
|
41 |
+
"_name_or_path": "",
|
42 |
+
"add_cross_attention": false,
|
43 |
+
"architectures": null,
|
44 |
+
"attention_dropout": 0.0,
|
45 |
+
"bad_words_ids": null,
|
46 |
+
"bos_token_id": null,
|
47 |
+
"chunk_size_feed_forward": 0,
|
48 |
+
"decoder_start_token_id": null,
|
49 |
+
"diversity_penalty": 0.0,
|
50 |
+
"do_sample": false,
|
51 |
+
"dropout": 0.0,
|
52 |
+
"early_stopping": false,
|
53 |
+
"encoder_no_repeat_ngram_size": 0,
|
54 |
+
"eos_token_id": null,
|
55 |
+
"finetuning_task": null,
|
56 |
+
"forced_bos_token_id": null,
|
57 |
+
"forced_eos_token_id": null,
|
58 |
+
"hidden_act": "quick_gelu",
|
59 |
+
"hidden_size": 768,
|
60 |
+
"id2label": {
|
61 |
+
"0": "LABEL_0",
|
62 |
+
"1": "LABEL_1"
|
63 |
+
},
|
64 |
+
"image_size": 224,
|
65 |
+
"initializer_factor": 1.0,
|
66 |
+
"initializer_range": 0.02,
|
67 |
+
"intermediate_size": 3072,
|
68 |
+
"is_decoder": false,
|
69 |
+
"is_encoder_decoder": false,
|
70 |
+
"label2id": {
|
71 |
+
"LABEL_0": 0,
|
72 |
+
"LABEL_1": 1
|
73 |
+
},
|
74 |
+
"layer_norm_eps": 1e-05,
|
75 |
+
"length_penalty": 1.0,
|
76 |
+
"max_length": 20,
|
77 |
+
"min_length": 0,
|
78 |
+
"model_type": "chinese_clip_vision_model",
|
79 |
+
"no_repeat_ngram_size": 0,
|
80 |
+
"num_attention_heads": 12,
|
81 |
+
"num_beam_groups": 1,
|
82 |
+
"num_beams": 1,
|
83 |
+
"num_hidden_layers": 12,
|
84 |
+
"num_return_sequences": 1,
|
85 |
+
"output_attentions": false,
|
86 |
+
"output_hidden_states": false,
|
87 |
+
"output_scores": false,
|
88 |
+
"pad_token_id": null,
|
89 |
+
"patch_size": 16,
|
90 |
+
"prefix": null,
|
91 |
+
"problem_type": null,
|
92 |
+
"projection_dim" : 512,
|
93 |
+
"pruned_heads": {},
|
94 |
+
"remove_invalid_values": false,
|
95 |
+
"repetition_penalty": 1.0,
|
96 |
+
"return_dict": true,
|
97 |
+
"return_dict_in_generate": false,
|
98 |
+
"sep_token_id": null,
|
99 |
+
"task_specific_params": null,
|
100 |
+
"temperature": 1.0,
|
101 |
+
"tie_encoder_decoder": false,
|
102 |
+
"tie_word_embeddings": true,
|
103 |
+
"tokenizer_class": null,
|
104 |
+
"top_k": 50,
|
105 |
+
"top_p": 1.0,
|
106 |
+
"torch_dtype": null,
|
107 |
+
"torchscript": false,
|
108 |
+
"transformers_version": "4.12.0.dev0",
|
109 |
+
"use_bfloat16": false
|
110 |
+
},
|
111 |
+
"vision_config_dict": {
|
112 |
+
"patch_size": 16
|
113 |
+
}
|
114 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_center_crop": false,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"feature_extractor_type": "ChineseCLIPFeatureExtractor",
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_std": [
|
12 |
+
0.26862954,
|
13 |
+
0.26130258,
|
14 |
+
0.27577711
|
15 |
+
],
|
16 |
+
"resample": 3,
|
17 |
+
"size": {
|
18 |
+
"height": 224,
|
19 |
+
"width": 224
|
20 |
+
}
|
21 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a17f44c0475d70d34c3842b30a3116bd2355b810aadffd4f55b2d0a450c3ebd6
|
3 |
+
size 377054982
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|