Safetensors
English
Zhiminli commited on
Commit
3a4b81e
1 Parent(s): 35dea3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -21
README.md CHANGED
@@ -34,21 +34,22 @@ If you want to load the `module` weights into the main model, just remove the `-
34
  If multiple resolution are used, you need to add the `--multireso` and `--reso-step 64 ` parameter.
35
 
36
  ```bash
37
- model='DiT-g/2' # model type
38
- task_flag="lora_jade_ema_rank64" # task flag
39
- resume=./ckpts/t2i/model/ # resume checkpoint
40
- index_file=dataset/index_v2_json/jade.json # index file
41
- results_dir=./log_EXP # save root for results
42
- batch_size=1 # training batch size
43
- image_size=1024 # training image resolution
44
- grad_accu_steps=2 # gradient accumulation steps
45
- warmup_num_steps=0 # warm-up steps
46
- lr=0.0001 # learning rate
47
- ckpt_every=100 # create a ckpt every a few steps.
48
- ckpt_latest_every=2000 # create a ckpt named `latest.pt` every a few steps.
49
- rank=64 # rank of lora
50
-
51
- PYTHONPATH=./ deepspeed hydit/train_large_deepspeed.py \
 
52
  --task-flag ${task_flag} \
53
  --model ${model} \
54
  --training_parts lora \
@@ -91,8 +92,8 @@ Recommended parameter settings
91
  |:---------------:|:---------:|:---------------------------------------------------:|:--:|
92
  | `--batch_size` | Training batch size | 1 | Depends on GPU memory|
93
  | `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
94
- | `--rank` | Rank of lora | 64 | 8-128 are all possible|
95
- | `--max-training-steps` | Training steps | 2000 | Varies with the amount of training data, about 2000 steps are enough for 100 images|
96
  | `--lr` | Learning rate | 0.0001 | - |
97
 
98
 
@@ -107,7 +108,7 @@ Make sure you have activated the conda environment before running the following
107
  > We recommend not using prompt enhance, as it may lead to the disappearance of style words.
108
 
109
  ```shell
110
- # porcelain style
111
 
112
  # By default, we start a Chinese UI.
113
  python app/hydit_app.py --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
@@ -122,7 +123,7 @@ python app/hydit_app.py --no-enhance --load-key ema --lora_ckpt ./ckpts/t2i/lor
122
  # Start with English UI
123
  python app/hydit_app.py --lang en --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
124
 
125
- # jade style
126
 
127
  # By default, we start a Chinese UI.
128
  python app/hydit_app.py --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
@@ -144,7 +145,7 @@ python app/hydit_app.py --lang en --load-key ema --lora_ckpt ./ckpts/t2i/lora/po
144
  We provide several commands to quick start:
145
 
146
  ```shell
147
- # porcelain style
148
 
149
  # Prompt Enhancement + Text-to-Image. Torch mode
150
  python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
@@ -158,7 +159,7 @@ python sample_t2i.py --infer-mode fa --prompt "玉石绘画风格,一只猫在
158
  # Generate an image with other image sizes.
159
  python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --image-size 1280 768 --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
160
 
161
- # jade style
162
 
163
  # Prompt Enhancement + Text-to-Image. Torch mode
164
  python sample_t2i.py --prompt "青花瓷风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
 
34
  If multiple resolution are used, you need to add the `--multireso` and `--reso-step 64 ` parameter.
35
 
36
  ```bash
37
+ model='DiT-g/2' # model type
38
+ task_flag="lora_porcelain_ema_rank64" # task flag
39
+ resume=./ckpts/t2i/model/ # resume checkpoint
40
+ index_file=dataset/porcelain/jsons/porcelain.json # the selected data indices
41
+ results_dir=./log_EXP # save root for results
42
+ batch_size=1 # training batch size
43
+ image_size=1024 # training image resolution
44
+ grad_accu_steps=2 # gradient accumulation steps
45
+ warmup_num_steps=0 # warm-up steps
46
+ lr=0.0001 # learning rate
47
+ ckpt_every=100 # create a ckpt every a few steps.
48
+ ckpt_latest_every=2000 # create a ckpt named `latest.pt` every a few steps.
49
+ rank=64 # rank of lora
50
+ max_training_steps=2000 # Maximum training iteration steps
51
+
52
+ PYTHONPATH=./ deepspeed hydit/train_deepspeed.py \
53
  --task-flag ${task_flag} \
54
  --model ${model} \
55
  --training_parts lora \
 
92
  |:---------------:|:---------:|:---------------------------------------------------:|:--:|
93
  | `--batch_size` | Training batch size | 1 | Depends on GPU memory|
94
  | `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
95
+ | `--rank` | Rank of lora | 64 | Choosing from 8-128|
96
+ | `--max-training-steps` | Training steps | 2000 | Depend on training data size, for reference apply 2000 steps on 100 images|
97
  | `--lr` | Learning rate | 0.0001 | - |
98
 
99
 
 
108
  > We recommend not using prompt enhance, as it may lead to the disappearance of style words.
109
 
110
  ```shell
111
+ # jade style
112
 
113
  # By default, we start a Chinese UI.
114
  python app/hydit_app.py --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
 
123
  # Start with English UI
124
  python app/hydit_app.py --lang en --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
125
 
126
+ # porcelain style
127
 
128
  # By default, we start a Chinese UI.
129
  python app/hydit_app.py --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain
 
145
  We provide several commands to quick start:
146
 
147
  ```shell
148
+ # jade style
149
 
150
  # Prompt Enhancement + Text-to-Image. Torch mode
151
  python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
 
159
  # Generate an image with other image sizes.
160
  python sample_t2i.py --prompt "玉石绘画风格,一只猫在追蝴蝶" --image-size 1280 768 --load-key ema --lora_ckpt ./ckpts/t2i/lora/jade
161
 
162
+ # porcelain style
163
 
164
  # Prompt Enhancement + Text-to-Image. Torch mode
165
  python sample_t2i.py --prompt "青花瓷风格,一只猫在追蝴蝶" --load-key ema --lora_ckpt ./ckpts/t2i/lora/porcelain