Model save
Browse files- README.md +110 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: google/vivit-b-16x2-kinetics400
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vivit-b-16x2-kinetics400-ft-3620
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vivit-b-16x2-kinetics400-ft-3620
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.9281
|
21 |
+
- Accuracy: 0.5566
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 5500
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
53 |
+
| 1.0684 | 0.0202 | 111 | 1.1114 | 0.3799 |
|
54 |
+
| 1.0415 | 1.0202 | 222 | 1.0135 | 0.5249 |
|
55 |
+
| 1.0271 | 2.0202 | 333 | 1.0630 | 0.4857 |
|
56 |
+
| 1.1609 | 3.0202 | 444 | 1.0203 | 0.4222 |
|
57 |
+
| 0.9824 | 4.0202 | 555 | 1.0219 | 0.5249 |
|
58 |
+
| 1.0247 | 5.0202 | 666 | 1.0210 | 0.5026 |
|
59 |
+
| 1.0824 | 6.0202 | 777 | 0.9947 | 0.4720 |
|
60 |
+
| 0.943 | 7.0202 | 888 | 1.1085 | 0.4381 |
|
61 |
+
| 0.8807 | 8.0202 | 999 | 0.9345 | 0.5767 |
|
62 |
+
| 1.1009 | 9.0202 | 1110 | 0.9855 | 0.5164 |
|
63 |
+
| 1.0292 | 10.0202 | 1221 | 1.0506 | 0.4339 |
|
64 |
+
| 0.9071 | 11.0202 | 1332 | 0.9926 | 0.5143 |
|
65 |
+
| 1.0001 | 12.0202 | 1443 | 1.0406 | 0.4931 |
|
66 |
+
| 0.9698 | 13.0202 | 1554 | 0.9440 | 0.5598 |
|
67 |
+
| 0.9405 | 14.0202 | 1665 | 0.9667 | 0.5323 |
|
68 |
+
| 0.8802 | 15.0202 | 1776 | 0.9011 | 0.5862 |
|
69 |
+
| 0.9154 | 16.0202 | 1887 | 0.9429 | 0.5598 |
|
70 |
+
| 0.929 | 17.0202 | 1998 | 0.9948 | 0.5132 |
|
71 |
+
| 0.9112 | 18.0202 | 2109 | 0.9056 | 0.5852 |
|
72 |
+
| 0.9202 | 19.0202 | 2220 | 0.9489 | 0.5524 |
|
73 |
+
| 0.9004 | 20.0202 | 2331 | 0.8995 | 0.5820 |
|
74 |
+
| 0.9318 | 21.0202 | 2442 | 0.9032 | 0.5958 |
|
75 |
+
| 0.8493 | 22.0202 | 2553 | 0.9975 | 0.5238 |
|
76 |
+
| 0.8587 | 23.0202 | 2664 | 1.0142 | 0.5259 |
|
77 |
+
| 0.958 | 24.0202 | 2775 | 0.9665 | 0.5376 |
|
78 |
+
| 0.996 | 25.0202 | 2886 | 0.9391 | 0.5704 |
|
79 |
+
| 0.823 | 26.0202 | 2997 | 0.9171 | 0.5778 |
|
80 |
+
| 0.8834 | 27.0202 | 3108 | 0.8923 | 0.5873 |
|
81 |
+
| 0.8615 | 28.0202 | 3219 | 0.9577 | 0.5471 |
|
82 |
+
| 0.9462 | 29.0202 | 3330 | 0.9468 | 0.5630 |
|
83 |
+
| 0.8909 | 30.0202 | 3441 | 0.9343 | 0.5672 |
|
84 |
+
| 0.8048 | 31.0202 | 3552 | 0.9107 | 0.5778 |
|
85 |
+
| 0.8109 | 32.0202 | 3663 | 0.9547 | 0.5492 |
|
86 |
+
| 0.9242 | 33.0202 | 3774 | 0.9275 | 0.5598 |
|
87 |
+
| 0.9046 | 34.0202 | 3885 | 0.9290 | 0.5831 |
|
88 |
+
| 0.7677 | 35.0202 | 3996 | 0.9208 | 0.5725 |
|
89 |
+
| 0.8501 | 36.0202 | 4107 | 0.9126 | 0.5810 |
|
90 |
+
| 0.8468 | 37.0202 | 4218 | 0.9053 | 0.5862 |
|
91 |
+
| 0.7814 | 38.0202 | 4329 | 0.8858 | 0.5905 |
|
92 |
+
| 0.9354 | 39.0202 | 4440 | 0.9207 | 0.5725 |
|
93 |
+
| 0.8849 | 40.0202 | 4551 | 0.9277 | 0.5651 |
|
94 |
+
| 0.7856 | 41.0202 | 4662 | 0.9130 | 0.5915 |
|
95 |
+
| 0.7133 | 42.0202 | 4773 | 0.9080 | 0.5884 |
|
96 |
+
| 0.932 | 43.0202 | 4884 | 0.9388 | 0.5577 |
|
97 |
+
| 0.6883 | 44.0202 | 4995 | 0.8925 | 0.5937 |
|
98 |
+
| 0.9944 | 45.0202 | 5106 | 0.9143 | 0.5820 |
|
99 |
+
| 0.8892 | 46.0202 | 5217 | 0.9103 | 0.5884 |
|
100 |
+
| 0.9071 | 47.0202 | 5328 | 0.9018 | 0.5905 |
|
101 |
+
| 0.7943 | 48.0202 | 5439 | 0.9022 | 0.5905 |
|
102 |
+
| 0.8034 | 49.0111 | 5500 | 0.9004 | 0.5947 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.41.2
|
108 |
+
- Pytorch 1.13.0+cu117
|
109 |
+
- Datasets 2.20.0
|
110 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 131116364
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce9ee63551da6ae79390b2b487db9cdf9ad07d84d73c8e7a3f4b044d846e9489
|
3 |
size 131116364
|