mboillet commited on
Commit
3338539
·
verified ·
1 Parent(s): 3ca31ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -17,7 +17,6 @@ metrics:
17
  pipeline_tag: image-segmentation
18
  ---
19
 
20
-
21
  # Doc-UFCN - Generic historical line detection
22
 
23
  The generic historical line detection model predicts text lines from document images.
@@ -25,12 +24,12 @@ The generic historical line detection model predicts text lines from document im
25
  ## Model description
26
 
27
  The model has been trained using the Doc-UFCN library on 10 historical document datasets including these public datasets:
28
- * [Bozen](https://zenodo.org/record/218236)
29
- * [cBAD2017 (READ)](https://zenodo.org/record/1491441)
30
- * [cBAD2019](https://zenodo.org/record/2567398)
31
- * [DIVA-HisDB](https://diuf.unifr.ch/main/hisdoc/diva-hisdb.html)
32
- * [Horae](https://github.com/oriflamms/HORAE/)
33
- * [ScribbleLens](https://www.openslr.org/84/)
34
 
35
  It has been trained on images with their largest dimension equal to 768 pixels, keeping the original aspect ratio.
36
 
@@ -38,8 +37,8 @@ It has been trained on images with their largest dimension equal to 768 pixels,
38
 
39
  The model achieves the following results on the test sets:
40
 
41
- | | IoU | F1 | AP@[.5] | AP@[.75] | AP@[.5,.95] |
42
- | ----------------------- | ----: | ----: | ------: | -------: | ----------: |
43
  | Bozen | 60.15 | 75.10 | 97.14 | 3.79 | 27.50 |
44
  | cBAD2017 (READ) Complex | 46.79 | 60.35 | 56.01 | 3.40 | 16.26 |
45
  | cBAD2017 (READ) Simple | 53.97 | 68.43 | 57.26 | 8.45 | 19.39 |
@@ -52,7 +51,7 @@ The model has been trained to reduce mergers in predictions (see the [paper](htt
52
 
53
  ## How to use?
54
 
55
- Please refer to the Doc-UFCN library page (https://pypi.org/project/doc-ufcn/) to use this model.
56
 
57
  ## Cite us!
58
 
@@ -69,7 +68,7 @@ Please refer to the Doc-UFCN library page (https://pypi.org/project/doc-ufcn/) t
69
  ```
70
 
71
  ```bibtex
72
- @inproceedings{boillet2020,
73
  author = {Boillet, Mélodie and Kermorvant, Christopher and Paquet, Thierry},
74
  title = {{Multiple Document Datasets Pre-training Improves Text Line Detection With
75
  Deep Neural Networks}},
 
17
  pipeline_tag: image-segmentation
18
  ---
19
 
 
20
  # Doc-UFCN - Generic historical line detection
21
 
22
  The generic historical line detection model predicts text lines from document images.
 
24
  ## Model description
25
 
26
  The model has been trained using the Doc-UFCN library on 10 historical document datasets including these public datasets:
27
+ * [Bozen](https://zenodo.org/record/218236);
28
+ * [cBAD2017 (READ)](https://zenodo.org/record/1491441);
29
+ * [cBAD2019](https://zenodo.org/record/2567398);
30
+ * [DIVA-HisDB](https://diuf.unifr.ch/main/hisdoc/diva-hisdb.html);
31
+ * [Horae](https://github.com/oriflamms/HORAE/);
32
+ * [ScribbleLens](https://www.openslr.org/84/).
33
 
34
  It has been trained on images with their largest dimension equal to 768 pixels, keeping the original aspect ratio.
35
 
 
37
 
38
  The model achieves the following results on the test sets:
39
 
40
+ | dataset | IoU | F1 | AP@[.5] | AP@[.75] | AP@[.5,.95] |
41
+ | :---------------------- | ----: | ----: | ------: | -------: | ----------: |
42
  | Bozen | 60.15 | 75.10 | 97.14 | 3.79 | 27.50 |
43
  | cBAD2017 (READ) Complex | 46.79 | 60.35 | 56.01 | 3.40 | 16.26 |
44
  | cBAD2017 (READ) Simple | 53.97 | 68.43 | 57.26 | 8.45 | 19.39 |
 
51
 
52
  ## How to use?
53
 
54
+ Please refer to the [Doc-UFCN library page](https://pypi.org/project/doc-ufcn/) to use this model.
55
 
56
  ## Cite us!
57
 
 
68
  ```
69
 
70
  ```bibtex
71
+ @inproceedings{doc_ufcn2021,
72
  author = {Boillet, Mélodie and Kermorvant, Christopher and Paquet, Thierry},
73
  title = {{Multiple Document Datasets Pre-training Improves Text Line Detection With
74
  Deep Neural Networks}},